一“图”胜千言:NVIDIA NIM Agent Blueprints 掀起新一轮企业生成式 AI 浪潮
生成式 AI 在网络服务中的使用引发了该技术的第一轮浪潮,各种能够帮助人们以空前速度进行写作、研究和想象的工具展现了无限的可能性。 如今,先进的开源基础模型已掀起第二轮生成式 AI 浪潮,同时,代理 AI 的进步正在提高 AI 工作流的效率和自主性。各行各业的企业都可以使用 Google Gemma、Llama 3.1 405B、Microsoft Phi、Mixtral 和 Nemotron 等模型开发自己的 AI 应用,以推动业务增长并提高生产力。 为了加快业务转型,企业需要标准的生成式 AI 工作流蓝图,例如数字人客服聊天机器人、检索增强生成、药物研发等。虽然 NVIDIA NIM 微服务能够帮助企业高效、便捷地利用这些模型,但企业生成式 AI 应用的构建过程仍然复杂,而且步骤繁多。 今天发布的 NVIDIA NIM Agent Blueprints 囊括了企业开发者构建和部署自定义生成式 AI 应用所需的一切,这些应用将对业务目标产生变革性影响。 数据驱动型企业飞轮的蓝图 NIM Agent Blueprints 是为特定用例量身定制的参考 AI 工作流,包含了使用 NVIDIA NIM 与合作伙伴微服务构建的示例应用、参考代码、自定义文档以及用于部署的 Helm 图表。 借助 NIM Agent Blueprints,开发者可以利用 NVIDIA 先进的 AI 工具以及针对每个用例的端到端开发经验,抢先创建自己的应用程序。这些蓝图可进行修改和增强,允许开发者利用信息检索以及可执行复杂任务的基于智能体的工作流。 NIM Agent Blueprints 还能帮助开发者在整个 AI 生命周期中改进应用。用户与 AI 应用的交互会产生新的数据,这些数据可用于在连续不断的学习循环中完善和增强模型,形成一个数据驱动型生成式 AI 飞轮。 NIM Agent Blueprin
NVIDIA 携手全球合作伙伴推出 NIM Agent Blueprints,助力企业打造属于自己的 AI
可定制工作流目录加快核心生成式 AI 用例的部署速度。首批用例包括客户服务、药物研发和 PDF 数据提取,未来将加入更多用例 企业可以使用 NIM Agent Blueprints 以及 NVIDIA AI Enterprise 平台中的 NIM 微服务与 NeMo 框架构建和运行他们的 AI 应用,创建数据驱动型 AI 飞轮 埃森哲、思科、戴尔科技、德勤、慧与、联想、SoftServe、World Wide Technology 等首批合作伙伴向全球企业提供 NIM Agent Blueprints 加利福尼亚州圣克拉拉—2024 年 8 月 27 日—NVIDIA 于今日发布预训练、可定制 AI 工作流目录 NVIDIA NIM™ Agent Blueprints,为数百万企业开发者提供全套软件,可为典型用例构建和部署生成式 AI 应用。目前覆盖的用例包括客服虚拟形象、检索增强生成、药物研发虚拟筛选等。 通过 NIM Agent Blueprints,开发者能够迅速开始创建使用一个或多个 AI 智能体的 AI 应用,包括使用 NVIDIA NeMo™、NVIDIA NIM 与合作伙伴微服务构建的示例应用、参考代码、自定义文档以及用于部署的 Helm 图表。 企业可以使用自己的业务数据修改 NIM Agent Blueprints,并在加速的数据中心和云中运行其生成式 AI 应用。借助 NIM Agent Blueprints,企业可以根据用户反馈不断完善其 AI 应用,形成一个数据驱动型的 AI 飞轮。 首批 NIM Agent Blueprints 现已推出,包括适用于客户服务的数字人工作流、适用于计算机辅助药物研发的生成式虚拟筛选工作流,以及适用于企业检索增强生成(RAG)的多模态 PDF 数据提取工作流。其中,多模态 PDF 数据提取工作流能够利用大量业务数据生成
NVIDIA CEO 黄仁勋对话 Meta CEO 马克·扎克伯格:创作者将拥有个性化的 AI 助手
在备受期待的 SIGGRAPH 2024 炉边谈话中,NVIDIA 创始人兼首席执行官黄仁勋和 Meta 创始人兼首席执行官马克·扎克伯格探讨了开源 AI 和 AI 助手的变革潜力。 扎克伯格首先宣布推出 AI Studio。这是一个新平台,允许用户创建、分享和发现 AI 角色,使数百万创作者和小型企业能够更方便地使用 AI。 黄仁勋表示:“未来,可能每家餐厅、每个网站都会使用这些 AI 功能。” 扎克伯格回应道:“就像现在每家企业都有电子邮件地址、网站和社交媒体账号一样,我认为在未来,每家企业都会拥有一个 AI。” Meta 的成功证明扎克伯格之前做了正确的事情。黄仁勋称赞扎克伯格和 Meta 是 AI 领域的领导者。 黄仁勋说:“你们在 AI 领域做了令人惊叹的工作”,他提到了 Meta 在计算机视觉、语言模型和实时翻译方面的进展。“我们都在使用 Meta 开发的 PyTorch。” 开源在推动 AI 发展中的重要性 扎克伯格强调了开源在推动 AI 发展中的重要性,并与黄仁勋共同指出开放平台对创新尤为关键。 Meta 已迅速成为 AI 领域的领导者,在各项业务中充分利用 AI。最值得关注的是 Meta AI 已被用于 Facebook、Instagram 和 WhatsApp。Meta 还在整个行业推进开源 AI 的发展,近期发布了 Llama 3.1 大模型。 该开源模型花费了大量时间和训练资源投入。这个迄今为止最大的 Llama 版本拥有 4050 亿个参数,使用 16000 多个 NVIDIA H100 GPU 进行了训练。 扎克伯格表示:“过去,推动所有改进的要素之一是每种类型的内容都有不同的模型。现在,随着模型变得更大、更通用,这种情况正在不断改善。有时我会梦想有一天,Facebook 或 Instagram 整个平台就像一个单一的 AI 模型,它将所有这些不
已有数以百万的用户在借助生成式 AI 进行写作和学习。现在,这项技术还可以帮助他们更有效地探索物理世界。 NVIDIA 在 SIGGRAPH 上宣布了生成式物理 AI 方面的进展,包括 NVIDIA Metropolis 参考工作流和全新的 NVIDIA NIM 微服务,前者用于打造交互式视觉 AI 智能体,后者能够协助开发者训练物理机器,并可让它们更好地处理复杂任务。 具体包括三个 fVDB NIM 微服务,这些微服务支持 NVIDIA 针对 3D 世界开发的全新深度学习框架,此外还包括能够与通用场景描述 (也就是 OpenUSD) 配合使用的 USD Code、USD Search 和 USD Validate NIM 微服务。 NVIDIA OpenUSD NIM 微服务能够与全球首个用于 OpenUSD 开发的生成式 AI 模型(同样由 NVIDIA 开发)搭配使用,使开发者能够将生成式 AI copilot 和智能体纳入到 USD 工作流程,并拓宽 3D 世界的可能性。 NVIDIA NIM 微服务将改变物理 AI 的格局 物理 AI 使用先进的仿真和学习方法,能够帮助机器人和其他工业自动化设备更有效地感知、推理和探索周围环境。该技术正在改变着制造、医疗健康等行业,并通过能够更自主、更精确运作的机器人、工厂和仓库技术、手术 AI 智能体和汽车推动智能空间的发展。 NVIDIA 提供广泛的 NIM 微服务,这些微服务是针对特定模型和行业领域定制的。NVIDIA 面向物理 AI 量身定制的 NIM 微服务套件支持语音和翻译、视觉和智能,以及逼真的动画和行为方面的功能。 借助 NVIDIA NIM,将视觉 AI 智能体转变为远见者 视觉 AI 智能体使用计算机视觉功能来感知物理世界、与物理世界交互并执行推理任务。 具有高度感知和交互能力的视觉 AI 智能体由