+关注
alexwanger
暂无个人介绍
IP属地:四川
10
关注
1
粉丝
3
主题
0
勋章
主贴
热门
alexwanger
2021-09-09
不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀
中国何时诞生“英伟达”?
alexwanger
2021-09-05
就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!
抱歉,原内容已删除
alexwanger
2021-08-22
中芯国际和百度,值得投资。
抱歉,原内容已删除
alexwanger
2021-08-22
等我港股开了户,我就买!😀
抱歉,原内容已删除
alexwanger
2021-08-22
蔚来车主出事,管别个百度自动驾驶毛事情!☺️
抱歉,原内容已删除
去老虎APP查看更多动态
{"i18n":{"language":"zh_CN"},"userPageInfo":{"id":"3545990537092247","uuid":"3545990537092247","gmtCreate":1582897591327,"gmtModify":1603375004319,"name":"alexwanger","pinyin":"alexwanger","introduction":"","introductionEn":null,"signature":"","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","hat":null,"hatId":null,"hatName":null,"vip":1,"status":2,"fanSize":1,"headSize":10,"tweetSize":5,"questionSize":0,"limitLevel":999,"accountStatus":3,"level":{"id":1,"name":"萌萌虎","nameTw":"萌萌虎","represent":"呱呱坠地","factor":"评论帖子3次或发布1条主帖(非转发)","iconColor":"3C9E83","bgColor":"A2F1D9"},"themeCounts":3,"badgeCounts":0,"badges":[],"moderator":false,"superModerator":false,"manageSymbols":null,"badgeLevel":null,"boolIsFan":false,"boolIsHead":false,"favoriteSize":0,"symbols":null,"coverImage":null,"realNameVerified":null,"userBadges":[{"badgeId":"e50ce593bb40487ebfb542ca54f6a561-3","templateUuid":"e50ce593bb40487ebfb542ca54f6a561","name":"偶像虎友","description":"加入老虎社区1500天","bigImgUrl":"https://static.tigerbbs.com/8b40ae7da5bf081a1c84df14bf9e6367","smallImgUrl":"https://static.tigerbbs.com/f160eceddd7c284a8e1136557615cfad","grayImgUrl":"https://static.tigerbbs.com/11792805c468334a9b31c39f95a41c6a","redirectLinkEnabled":0,"redirectLink":null,"hasAllocated":1,"isWearing":0,"stamp":null,"stampPosition":0,"hasStamp":0,"allocationCount":1,"allocatedDate":"2024.04.08","exceedPercentage":null,"individualDisplayEnabled":0,"backgroundColor":null,"fontColor":null,"individualDisplaySort":0,"categoryType":1001},{"badgeId":"02aa7f16703b4ce4ace6f1a7665789cc-1","templateUuid":"02aa7f16703b4ce4ace6f1a7665789cc","name":"知识体验官","description":"观看学堂课程满5节","bigImgUrl":"https://static.tigerbbs.com/fb5ae275631fb96a92d475cdc85d2302","smallImgUrl":"https://static.tigerbbs.com/c2660a1935bd2105e97c9915619936c3","grayImgUrl":null,"redirectLinkEnabled":0,"redirectLink":null,"hasAllocated":1,"isWearing":0,"stamp":null,"stampPosition":0,"hasStamp":0,"allocationCount":1,"allocatedDate":"2022.08.05","exceedPercentage":null,"individualDisplayEnabled":0,"backgroundColor":null,"fontColor":null,"individualDisplaySort":0,"categoryType":2006}],"userBadgeCount":2,"currentWearingBadge":null,"individualDisplayBadges":null,"crmLevel":1,"crmLevelSwitch":0,"location":"四川","starInvestorFollowerNum":0,"starInvestorFlag":false,"starInvestorOrderShareNum":0,"subscribeStarInvestorNum":0,"ror":null,"winRationPercentage":null,"showRor":false,"investmentPhilosophy":null,"starInvestorSubscribeFlag":false},"baikeInfo":{},"tab":"post","tweets":[{"id":889750243,"gmtCreate":1631181858682,"gmtModify":1631181858682,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"idStr":"3545990537092247","authorIdStr":"3545990537092247"},"themes":[],"htmlText":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","listText":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","text":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":14,"commentSize":1,"repostSize":0,"link":"https://laohu8.com/post/889750243","repostId":"2166195813","repostType":2,"repost":{"id":"2166195813","weMediaInfo":{"introduction":"新型财经科技信息服务提供商,专注TMT。技术改变商业,商业改变世界,我们纪录这个过程,并聚集这些改变世界的人。","home_visible":1,"media_name":"TMTPost","id":"1065587721","head_image":"https://static.tigerbbs.com/72948639b39fd795a430fcaa2772851c"},"pubTimestamp":1631170956,"share":"https://www.laohu8.com/m/news/2166195813?lang=&edition=full","pubTime":"2021-09-09 15:02","market":"us","language":"zh","title":"中国何时诞生“英伟达”?","url":"https://stock-news.laohu8.com/highlight/detail?id=2166195813","media":"TMTPost","summary":"这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。","content":"<p><img src=\"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e\" tg-width=\"1200\" tg-height=\"750\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"><a href=\"https://laohu8.com/S/NVDA\">英伟达</a>CEO黄仁勋(图片来源:Nvidia官网)</p>\n<p>“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”</p>\n<p>这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。</p>\n<p>这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。</p>\n<p>自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,<b>英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工<a href=\"https://laohu8.com/S/5RE.SI\">智能</a>(AI)芯片领域炙手可热的明星企业。</b></p>\n<p>与此同时,在英伟达市值超过<a href=\"https://laohu8.com/S/INTC\">英特尔</a>之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,<a href=\"https://laohu8.com/S/300474\">景嘉微</a>、天数智芯、登临科技、壁仞科技、燧原科技、<a href=\"https://laohu8.com/S/688256\">寒武纪</a>、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>近两年,国内半导体产业发生着转变。由于华为海思、<a href=\"https://laohu8.com/S/SMI\">中芯国际</a>等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。</p>\n<p>2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。</p>\n<p>尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:<b>随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。</b>从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。</p>\n<p><b>另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。</b>根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。</p>\n<p><b>偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?</b></p>\n<h2>错失黄金时代</h2>\n<p>GPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。</p>\n<p>随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。</p>\n<p>以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。</p>\n<p><b>自从<a href=\"https://laohu8.com/S/AMD\">AMD</a>在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。</b></p>\n<p>根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。</p>\n<p>仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。</p>\n<p>英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由<a href=\"https://laohu8.com/S/TSM\">台积电</a>代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。</p>\n<p><b>事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。</b></p>\n<p><b>从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。</b></p>\n<p>到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“<a href=\"https://laohu8.com/S/688981\">中芯国际</a>”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。</p>\n<p>目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。</p>\n<p>除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。</p>\n<p>但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)</p>\n<p><img src=\"https://static.tigerbbs.com/15cb73d2787595547a9ed01926f4dfbe\" tg-width=\"570\" tg-height=\"1926\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p><b>背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。</b></p>\n<p>以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。</p>\n<p>在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。</p>\n<p>“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”<a href=\"https://laohu8.com/S/SNPS\">新思科技</a>中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。</p>\n<p>在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。</p>\n<p><b>此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。</b></p>\n<p>2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。</p>\n<p>相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。</p>\n<p>“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。</p>\n<p>但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。</p>\n<p><b>总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。</b></p>\n<p>中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。</p>\n<p>中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。</p>\n<p>高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国<a href=\"https://laohu8.com/S/V03.SI\">创业公司</a>很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。</p>\n<p>高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。</p>\n<p>黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。</p>\n<h2>风口已至</h2>\n<p>“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。</p>\n<p>章高男举了一个例子,<a href=\"https://laohu8.com/S/688111\">金山办公</a>产品虽然逊于<a href=\"https://laohu8.com/S/MSFT\">微软</a>Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。</p>\n<p>华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。</p>\n<p>实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。<b>据<a href=\"https://laohu8.com/S/601555\">东吴证券</a>测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。</b></p>\n<p>今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、<a href=\"https://laohu8.com/S/601318\">中国平安</a>、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。</p>\n<p><b>除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。</b></p>\n<p>8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、<a href=\"https://laohu8.com/S/00810\">中国互联网投资</a>基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本<a href=\"https://laohu8.com/S/CHN\">中国基金</a>、招商局创投、字节跳动、小马智行、五源资本等。</p>\n<p><b>不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。</b></p>\n<p>为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。</p>\n<p>“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。</p>\n<p>但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。</p>\n<p>此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。</p>\n<p>对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。</p>\n<p>鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。<b>他预计,10年内会出现一批技术领先的国产GPU、DPU企业。</b></p>\n<p>“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。</p>\n<p>壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。</p>\n<h2>百亿DPU芯片市场“爆火”</h2>\n<p>在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。</p>\n<p>2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)</p>\n<p>CPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。<b>2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。</b></p>\n<p>究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。</p>\n<p>据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。</p>\n<p>业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。</p>\n<p>章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。</p>\n<p><b>随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。</b></p>\n<p>今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成<a href=\"https://laohu8.com/S/00700\">腾讯</a>投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。</p>\n<p>“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。</p>\n<p><b>头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。</b>同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。<img src=\"https://static.tigerbbs.com/7170c585dab44018726df81a32c63d62\" tg-width=\"808\" tg-height=\"500\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p>中国DPU市场规模,2020-2025年预测,来源:头豹研究院</p>\n<p>鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。</p>\n<p>以<a href=\"https://laohu8.com/S/600918\">中泰证券</a>为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。</p>\n<p><b>不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。</b></p>\n<p>芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。</p>\n<p>也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。</p>\n<p>正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”</p>\n<p>章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。</p>","collect":0,"html":"<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<meta name=\"viewport\" content=\"width=device-width,initial-scale=1.0,minimum-scale=1.0,maximum-scale=1.0,user-scalable=no\"/>\n<meta name=\"format-detection\" content=\"telephone=no,email=no,address=no\" />\n<title>中国何时诞生“英伟达”?</title>\n<style type=\"text/css\">\na,abbr,acronym,address,applet,article,aside,audio,b,big,blockquote,body,canvas,caption,center,cite,code,dd,del,details,dfn,div,dl,dt,\nem,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,html,i,iframe,img,ins,kbd,label,legend,li,mark,menu,nav,\nobject,ol,output,p,pre,q,ruby,s,samp,section,small,span,strike,strong,sub,summary,sup,table,tbody,td,tfoot,th,thead,time,tr,tt,u,ul,var,video{ font:inherit;margin:0;padding:0;vertical-align:baseline;border:0 }\nbody{ font-size:16px; line-height:1.5; color:#999; background:transparent; }\n.wrapper{ overflow:hidden;word-break:break-all;padding:10px; }\nh1,h2{ font-weight:normal; line-height:1.35; margin-bottom:.6em; }\nh3,h4,h5,h6{ line-height:1.35; margin-bottom:1em; }\nh1{ font-size:24px; }\nh2{ font-size:20px; }\nh3{ font-size:18px; }\nh4{ font-size:16px; }\nh5{ font-size:14px; }\nh6{ font-size:12px; }\np,ul,ol,blockquote,dl,table{ margin:1.2em 0; }\nul,ol{ margin-left:2em; }\nul{ list-style:disc; }\nol{ list-style:decimal; }\nli,li p{ margin:10px 0;}\nimg{ max-width:100%;display:block;margin:0 auto 1em; }\nblockquote{ color:#B5B2B1; border-left:3px solid #aaa; padding:1em; }\nstrong,b{font-weight:bold;}\nem,i{font-style:italic;}\ntable{ width:100%;border-collapse:collapse;border-spacing:1px;margin:1em 0;font-size:.9em; }\nth,td{ padding:5px;text-align:left;border:1px solid #aaa; }\nth{ font-weight:bold;background:#5d5d5d; }\n.symbol-link{font-weight:bold;}\n/* header{ border-bottom:1px solid #494756; } */\n.title{ margin:0 0 8px;line-height:1.3;color:#ddd; }\n.meta {color:#5e5c6d;font-size:13px;margin:0 0 .5em; }\na{text-decoration:none; color:#2a4b87;}\n.meta .head { display: inline-block; overflow: hidden}\n.head .h-thumb { width: 30px; height: 30px; margin: 0; padding: 0; border-radius: 50%; float: left;}\n.head .h-content { margin: 0; padding: 0 0 0 9px; float: left;}\n.head .h-name {font-size: 13px; color: #eee; margin: 0;}\n.head .h-time {font-size: 11px; color: #7E829C; margin: 0;line-height: 11px;}\n.small {font-size: 12.5px; display: inline-block; transform: scale(0.9); -webkit-transform: scale(0.9); transform-origin: left; -webkit-transform-origin: left;}\n.smaller {font-size: 12.5px; display: inline-block; transform: scale(0.8); -webkit-transform: scale(0.8); transform-origin: left; -webkit-transform-origin: left;}\n.bt-text {font-size: 12px;margin: 1.5em 0 0 0}\n.bt-text p {margin: 0}\n</style>\n</head>\n<body>\n<div class=\"wrapper\">\n<header>\n<h2 class=\"title\">\n中国何时诞生“英伟达”?\n</h2>\n\n<h4 class=\"meta\">\n\n\n<a class=\"head\" href=\"https://laohu8.com/wemedia/1065587721\">\n\n\n<div class=\"h-thumb\" style=\"background-image:url(https://static.tigerbbs.com/72948639b39fd795a430fcaa2772851c);background-size:cover;\"></div>\n\n<div class=\"h-content\">\n<p class=\"h-name\">TMTPost </p>\n<p class=\"h-time\">2021-09-09 15:02</p>\n</div>\n\n</a>\n\n\n</h4>\n\n</header>\n<article>\n<p><img src=\"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e\" tg-width=\"1200\" tg-height=\"750\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"><a href=\"https://laohu8.com/S/NVDA\">英伟达</a>CEO黄仁勋(图片来源:Nvidia官网)</p>\n<p>“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”</p>\n<p>这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。</p>\n<p>这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。</p>\n<p>自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,<b>英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工<a href=\"https://laohu8.com/S/5RE.SI\">智能</a>(AI)芯片领域炙手可热的明星企业。</b></p>\n<p>与此同时,在英伟达市值超过<a href=\"https://laohu8.com/S/INTC\">英特尔</a>之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,<a href=\"https://laohu8.com/S/300474\">景嘉微</a>、天数智芯、登临科技、壁仞科技、燧原科技、<a href=\"https://laohu8.com/S/688256\">寒武纪</a>、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>近两年,国内半导体产业发生着转变。由于华为海思、<a href=\"https://laohu8.com/S/SMI\">中芯国际</a>等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。</p>\n<p>2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。</p>\n<p>尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:<b>随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。</b>从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。</p>\n<p><b>另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。</b>根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。</p>\n<p><b>偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?</b></p>\n<h2>错失黄金时代</h2>\n<p>GPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。</p>\n<p>随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。</p>\n<p>以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。</p>\n<p><b>自从<a href=\"https://laohu8.com/S/AMD\">AMD</a>在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。</b></p>\n<p>根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。</p>\n<p>仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。</p>\n<p>英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由<a href=\"https://laohu8.com/S/TSM\">台积电</a>代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。</p>\n<p><b>事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。</b></p>\n<p><b>从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。</b></p>\n<p>到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“<a href=\"https://laohu8.com/S/688981\">中芯国际</a>”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。</p>\n<p>目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。</p>\n<p>除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。</p>\n<p>但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)</p>\n<p><img src=\"https://static.tigerbbs.com/15cb73d2787595547a9ed01926f4dfbe\" tg-width=\"570\" tg-height=\"1926\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p><b>背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。</b></p>\n<p>以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。</p>\n<p>在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。</p>\n<p>“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”<a href=\"https://laohu8.com/S/SNPS\">新思科技</a>中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。</p>\n<p>在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。</p>\n<p><b>此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。</b></p>\n<p>2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。</p>\n<p>相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。</p>\n<p>“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。</p>\n<p>但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。</p>\n<p><b>总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。</b></p>\n<p>中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。</p>\n<p>中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。</p>\n<p>高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国<a href=\"https://laohu8.com/S/V03.SI\">创业公司</a>很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。</p>\n<p>高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。</p>\n<p>黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。</p>\n<h2>风口已至</h2>\n<p>“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。</p>\n<p>章高男举了一个例子,<a href=\"https://laohu8.com/S/688111\">金山办公</a>产品虽然逊于<a href=\"https://laohu8.com/S/MSFT\">微软</a>Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。</p>\n<p>华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。</p>\n<p>实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。<b>据<a href=\"https://laohu8.com/S/601555\">东吴证券</a>测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。</b></p>\n<p>今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、<a href=\"https://laohu8.com/S/601318\">中国平安</a>、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。</p>\n<p><b>除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。</b></p>\n<p>8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、<a href=\"https://laohu8.com/S/00810\">中国互联网投资</a>基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本<a href=\"https://laohu8.com/S/CHN\">中国基金</a>、招商局创投、字节跳动、小马智行、五源资本等。</p>\n<p><b>不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。</b></p>\n<p>为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。</p>\n<p>“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。</p>\n<p>但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。</p>\n<p>此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。</p>\n<p>对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。</p>\n<p>鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。<b>他预计,10年内会出现一批技术领先的国产GPU、DPU企业。</b></p>\n<p>“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。</p>\n<p>壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。</p>\n<h2>百亿DPU芯片市场“爆火”</h2>\n<p>在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。</p>\n<p>2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)</p>\n<p>CPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。<b>2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。</b></p>\n<p>究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。</p>\n<p>据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。</p>\n<p>业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。</p>\n<p>章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。</p>\n<p><b>随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。</b></p>\n<p>今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成<a href=\"https://laohu8.com/S/00700\">腾讯</a>投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。</p>\n<p>“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。</p>\n<p><b>头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。</b>同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。<img src=\"https://static.tigerbbs.com/7170c585dab44018726df81a32c63d62\" tg-width=\"808\" tg-height=\"500\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p>中国DPU市场规模,2020-2025年预测,来源:头豹研究院</p>\n<p>鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。</p>\n<p>以<a href=\"https://laohu8.com/S/600918\">中泰证券</a>为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。</p>\n<p><b>不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。</b></p>\n<p>芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。</p>\n<p>也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。</p>\n<p>正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”</p>\n<p>章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。</p>\n\n</article>\n</div>\n</body>\n</html>\n","type":0,"thumbnail":"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e","relate_stocks":{"NVDA":"英伟达"},"is_english":false,"share_image_url":"https://static.laohu8.com/e9f99090a1c2ed51c021029395664489","article_id":"2166195813","content_text":"英伟达CEO黄仁勋(图片来源:Nvidia官网)\n“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”\n这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。\n这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。\n自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工智能(AI)芯片领域炙手可热的明星企业。\n与此同时,在英伟达市值超过英特尔之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。\n近两年,国内半导体产业发生着转变。由于华为海思、中芯国际等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。\n2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。\n尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。\n另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。\n偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?\n错失黄金时代\nGPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。\n随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。\n以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。\n自从AMD在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。\n根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。\n仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。\n英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由台积电代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。\n事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。\n从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。\n到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“中芯国际”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。\n目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。\n2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。\n除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。\n但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)\n\n背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。\n以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。\n在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。\n“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”新思科技中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。\n在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。\n此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。\n2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。\n相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。\n“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。\n但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。\n总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。\n中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。\n中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。\n高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国创业公司很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。\n高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。\n黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。\n风口已至\n“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。\n章高男举了一个例子,金山办公产品虽然逊于微软Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。\n华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。\n实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。据东吴证券测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。\n今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、中国平安、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。\n除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。\n8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、中国互联网投资基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本中国基金、招商局创投、字节跳动、小马智行、五源资本等。\n不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。\n为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。\n“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。\n但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。\n此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。\n对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。\n鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。他预计,10年内会出现一批技术领先的国产GPU、DPU企业。\n“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。\n壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。\n百亿DPU芯片市场“爆火”\n在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。\n2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)\nCPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。\n究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。\n据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。\n业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。\n章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。\n随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。\n今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成腾讯投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。\n“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。\n头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。\n中国DPU市场规模,2020-2025年预测,来源:头豹研究院\n鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。\n以中泰证券为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。\n不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。\n芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。\n也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。\n正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”\n章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。","news_type":1},"isVote":1,"tweetType":1,"viewCount":2681,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":814256789,"gmtCreate":1630831004241,"gmtModify":1630831004241,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"idStr":"3545990537092247","authorIdStr":"3545990537092247"},"themes":[],"htmlText":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","listText":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","text":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":2,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/814256789","repostId":"1175054400","repostType":4,"isVote":1,"tweetType":1,"viewCount":2487,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832234984,"gmtCreate":1629636629148,"gmtModify":1629636629148,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"idStr":"3545990537092247","authorIdStr":"3545990537092247"},"themes":[],"htmlText":"中芯国际和百度,值得投资。","listText":"中芯国际和百度,值得投资。","text":"中芯国际和百度,值得投资。","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":4,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832234984","repostId":"1164432970","repostType":2,"isVote":1,"tweetType":1,"viewCount":2665,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832232123,"gmtCreate":1629636318862,"gmtModify":1629636318862,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"idStr":"3545990537092247","authorIdStr":"3545990537092247"},"themes":[],"htmlText":"等我港股开了户,我就买!😀","listText":"等我港股开了户,我就买!😀","text":"等我港股开了户,我就买!😀","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":0,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832232123","repostId":"2161749025","repostType":2,"isVote":1,"tweetType":1,"viewCount":2819,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832232084,"gmtCreate":1629636279448,"gmtModify":1629636279448,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"idStr":"3545990537092247","authorIdStr":"3545990537092247"},"themes":[],"htmlText":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","listText":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","text":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":1,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832232084","repostId":"2161749025","repostType":2,"isVote":1,"tweetType":1,"viewCount":2842,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0}],"hots":[{"id":889750243,"gmtCreate":1631181858682,"gmtModify":1631181858682,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"authorIdStr":"3545990537092247","idStr":"3545990537092247"},"themes":[],"htmlText":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","listText":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","text":"不是起步晚,是路线方针和政策都是歪的。多修点房子,芯片就能追上。😀","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":14,"commentSize":1,"repostSize":0,"link":"https://laohu8.com/post/889750243","repostId":"2166195813","repostType":2,"repost":{"id":"2166195813","weMediaInfo":{"introduction":"新型财经科技信息服务提供商,专注TMT。技术改变商业,商业改变世界,我们纪录这个过程,并聚集这些改变世界的人。","home_visible":1,"media_name":"TMTPost","id":"1065587721","head_image":"https://static.tigerbbs.com/72948639b39fd795a430fcaa2772851c"},"pubTimestamp":1631170956,"share":"https://www.laohu8.com/m/news/2166195813?lang=&edition=full","pubTime":"2021-09-09 15:02","market":"us","language":"zh","title":"中国何时诞生“英伟达”?","url":"https://stock-news.laohu8.com/highlight/detail?id=2166195813","media":"TMTPost","summary":"这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。","content":"<p><img src=\"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e\" tg-width=\"1200\" tg-height=\"750\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"><a href=\"https://laohu8.com/S/NVDA\">英伟达</a>CEO黄仁勋(图片来源:Nvidia官网)</p>\n<p>“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”</p>\n<p>这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。</p>\n<p>这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。</p>\n<p>自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,<b>英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工<a href=\"https://laohu8.com/S/5RE.SI\">智能</a>(AI)芯片领域炙手可热的明星企业。</b></p>\n<p>与此同时,在英伟达市值超过<a href=\"https://laohu8.com/S/INTC\">英特尔</a>之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,<a href=\"https://laohu8.com/S/300474\">景嘉微</a>、天数智芯、登临科技、壁仞科技、燧原科技、<a href=\"https://laohu8.com/S/688256\">寒武纪</a>、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>近两年,国内半导体产业发生着转变。由于华为海思、<a href=\"https://laohu8.com/S/SMI\">中芯国际</a>等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。</p>\n<p>2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。</p>\n<p>尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:<b>随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。</b>从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。</p>\n<p><b>另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。</b>根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。</p>\n<p><b>偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?</b></p>\n<h2>错失黄金时代</h2>\n<p>GPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。</p>\n<p>随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。</p>\n<p>以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。</p>\n<p><b>自从<a href=\"https://laohu8.com/S/AMD\">AMD</a>在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。</b></p>\n<p>根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。</p>\n<p>仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。</p>\n<p>英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由<a href=\"https://laohu8.com/S/TSM\">台积电</a>代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。</p>\n<p><b>事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。</b></p>\n<p><b>从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。</b></p>\n<p>到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“<a href=\"https://laohu8.com/S/688981\">中芯国际</a>”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。</p>\n<p>目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。</p>\n<p>除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。</p>\n<p>但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)</p>\n<p><img src=\"https://static.tigerbbs.com/15cb73d2787595547a9ed01926f4dfbe\" tg-width=\"570\" tg-height=\"1926\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p><b>背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。</b></p>\n<p>以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。</p>\n<p>在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。</p>\n<p>“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”<a href=\"https://laohu8.com/S/SNPS\">新思科技</a>中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。</p>\n<p>在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。</p>\n<p><b>此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。</b></p>\n<p>2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。</p>\n<p>相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。</p>\n<p>“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。</p>\n<p>但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。</p>\n<p><b>总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。</b></p>\n<p>中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。</p>\n<p>中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。</p>\n<p>高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国<a href=\"https://laohu8.com/S/V03.SI\">创业公司</a>很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。</p>\n<p>高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。</p>\n<p>黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。</p>\n<h2>风口已至</h2>\n<p>“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。</p>\n<p>章高男举了一个例子,<a href=\"https://laohu8.com/S/688111\">金山办公</a>产品虽然逊于<a href=\"https://laohu8.com/S/MSFT\">微软</a>Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。</p>\n<p>华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。</p>\n<p>实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。<b>据<a href=\"https://laohu8.com/S/601555\">东吴证券</a>测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。</b></p>\n<p>今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、<a href=\"https://laohu8.com/S/601318\">中国平安</a>、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。</p>\n<p><b>除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。</b></p>\n<p>8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、<a href=\"https://laohu8.com/S/00810\">中国互联网投资</a>基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本<a href=\"https://laohu8.com/S/CHN\">中国基金</a>、招商局创投、字节跳动、小马智行、五源资本等。</p>\n<p><b>不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。</b></p>\n<p>为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。</p>\n<p>“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。</p>\n<p>但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。</p>\n<p>此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。</p>\n<p>对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。</p>\n<p>鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。<b>他预计,10年内会出现一批技术领先的国产GPU、DPU企业。</b></p>\n<p>“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。</p>\n<p>壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。</p>\n<h2>百亿DPU芯片市场“爆火”</h2>\n<p>在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。</p>\n<p>2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)</p>\n<p>CPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。<b>2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。</b></p>\n<p>究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。</p>\n<p>据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。</p>\n<p>业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。</p>\n<p>章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。</p>\n<p><b>随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。</b></p>\n<p>今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成<a href=\"https://laohu8.com/S/00700\">腾讯</a>投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。</p>\n<p>“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。</p>\n<p><b>头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。</b>同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。<img src=\"https://static.tigerbbs.com/7170c585dab44018726df81a32c63d62\" tg-width=\"808\" tg-height=\"500\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p>中国DPU市场规模,2020-2025年预测,来源:头豹研究院</p>\n<p>鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。</p>\n<p>以<a href=\"https://laohu8.com/S/600918\">中泰证券</a>为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。</p>\n<p><b>不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。</b></p>\n<p>芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。</p>\n<p>也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。</p>\n<p>正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”</p>\n<p>章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。</p>","collect":0,"html":"<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<meta name=\"viewport\" content=\"width=device-width,initial-scale=1.0,minimum-scale=1.0,maximum-scale=1.0,user-scalable=no\"/>\n<meta name=\"format-detection\" content=\"telephone=no,email=no,address=no\" />\n<title>中国何时诞生“英伟达”?</title>\n<style type=\"text/css\">\na,abbr,acronym,address,applet,article,aside,audio,b,big,blockquote,body,canvas,caption,center,cite,code,dd,del,details,dfn,div,dl,dt,\nem,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,html,i,iframe,img,ins,kbd,label,legend,li,mark,menu,nav,\nobject,ol,output,p,pre,q,ruby,s,samp,section,small,span,strike,strong,sub,summary,sup,table,tbody,td,tfoot,th,thead,time,tr,tt,u,ul,var,video{ font:inherit;margin:0;padding:0;vertical-align:baseline;border:0 }\nbody{ font-size:16px; line-height:1.5; color:#999; background:transparent; }\n.wrapper{ overflow:hidden;word-break:break-all;padding:10px; }\nh1,h2{ font-weight:normal; line-height:1.35; margin-bottom:.6em; }\nh3,h4,h5,h6{ line-height:1.35; margin-bottom:1em; }\nh1{ font-size:24px; }\nh2{ font-size:20px; }\nh3{ font-size:18px; }\nh4{ font-size:16px; }\nh5{ font-size:14px; }\nh6{ font-size:12px; }\np,ul,ol,blockquote,dl,table{ margin:1.2em 0; }\nul,ol{ margin-left:2em; }\nul{ list-style:disc; }\nol{ list-style:decimal; }\nli,li p{ margin:10px 0;}\nimg{ max-width:100%;display:block;margin:0 auto 1em; }\nblockquote{ color:#B5B2B1; border-left:3px solid #aaa; padding:1em; }\nstrong,b{font-weight:bold;}\nem,i{font-style:italic;}\ntable{ width:100%;border-collapse:collapse;border-spacing:1px;margin:1em 0;font-size:.9em; }\nth,td{ padding:5px;text-align:left;border:1px solid #aaa; }\nth{ font-weight:bold;background:#5d5d5d; }\n.symbol-link{font-weight:bold;}\n/* header{ border-bottom:1px solid #494756; } */\n.title{ margin:0 0 8px;line-height:1.3;color:#ddd; }\n.meta {color:#5e5c6d;font-size:13px;margin:0 0 .5em; }\na{text-decoration:none; color:#2a4b87;}\n.meta .head { display: inline-block; overflow: hidden}\n.head .h-thumb { width: 30px; height: 30px; margin: 0; padding: 0; border-radius: 50%; float: left;}\n.head .h-content { margin: 0; padding: 0 0 0 9px; float: left;}\n.head .h-name {font-size: 13px; color: #eee; margin: 0;}\n.head .h-time {font-size: 11px; color: #7E829C; margin: 0;line-height: 11px;}\n.small {font-size: 12.5px; display: inline-block; transform: scale(0.9); -webkit-transform: scale(0.9); transform-origin: left; -webkit-transform-origin: left;}\n.smaller {font-size: 12.5px; display: inline-block; transform: scale(0.8); -webkit-transform: scale(0.8); transform-origin: left; -webkit-transform-origin: left;}\n.bt-text {font-size: 12px;margin: 1.5em 0 0 0}\n.bt-text p {margin: 0}\n</style>\n</head>\n<body>\n<div class=\"wrapper\">\n<header>\n<h2 class=\"title\">\n中国何时诞生“英伟达”?\n</h2>\n\n<h4 class=\"meta\">\n\n\n<a class=\"head\" href=\"https://laohu8.com/wemedia/1065587721\">\n\n\n<div class=\"h-thumb\" style=\"background-image:url(https://static.tigerbbs.com/72948639b39fd795a430fcaa2772851c);background-size:cover;\"></div>\n\n<div class=\"h-content\">\n<p class=\"h-name\">TMTPost </p>\n<p class=\"h-time\">2021-09-09 15:02</p>\n</div>\n\n</a>\n\n\n</h4>\n\n</header>\n<article>\n<p><img src=\"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e\" tg-width=\"1200\" tg-height=\"750\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"><a href=\"https://laohu8.com/S/NVDA\">英伟达</a>CEO黄仁勋(图片来源:Nvidia官网)</p>\n<p>“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”</p>\n<p>这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。</p>\n<p>这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。</p>\n<p>自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,<b>英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工<a href=\"https://laohu8.com/S/5RE.SI\">智能</a>(AI)芯片领域炙手可热的明星企业。</b></p>\n<p>与此同时,在英伟达市值超过<a href=\"https://laohu8.com/S/INTC\">英特尔</a>之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,<a href=\"https://laohu8.com/S/300474\">景嘉微</a>、天数智芯、登临科技、壁仞科技、燧原科技、<a href=\"https://laohu8.com/S/688256\">寒武纪</a>、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>近两年,国内半导体产业发生着转变。由于华为海思、<a href=\"https://laohu8.com/S/SMI\">中芯国际</a>等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。</p>\n<p>2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。</p>\n<p>尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:<b>随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。</b>从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。</p>\n<p><b>另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。</b>根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。</p>\n<p><b>偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?</b></p>\n<h2>错失黄金时代</h2>\n<p>GPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。</p>\n<p>随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。</p>\n<p>以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。</p>\n<p><b>自从<a href=\"https://laohu8.com/S/AMD\">AMD</a>在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。</b></p>\n<p>根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。</p>\n<p>仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。</p>\n<p>英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由<a href=\"https://laohu8.com/S/TSM\">台积电</a>代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。</p>\n<p><b>事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。</b></p>\n<p><b>从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。</b></p>\n<p>到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“<a href=\"https://laohu8.com/S/688981\">中芯国际</a>”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。</p>\n<p>目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。</p>\n<p>2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。</p>\n<p>除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。</p>\n<p>但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)</p>\n<p><img src=\"https://static.tigerbbs.com/15cb73d2787595547a9ed01926f4dfbe\" tg-width=\"570\" tg-height=\"1926\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p><b>背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。</b></p>\n<p>以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。</p>\n<p>在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。</p>\n<p>“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”<a href=\"https://laohu8.com/S/SNPS\">新思科技</a>中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。</p>\n<p>在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。</p>\n<p><b>此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。</b></p>\n<p>2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。</p>\n<p>相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。</p>\n<p>“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。</p>\n<p>但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。</p>\n<p><b>总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。</b></p>\n<p>中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。</p>\n<p>中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。</p>\n<p>高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国<a href=\"https://laohu8.com/S/V03.SI\">创业公司</a>很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。</p>\n<p>高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。</p>\n<p>黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。</p>\n<h2>风口已至</h2>\n<p>“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。</p>\n<p>章高男举了一个例子,<a href=\"https://laohu8.com/S/688111\">金山办公</a>产品虽然逊于<a href=\"https://laohu8.com/S/MSFT\">微软</a>Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。</p>\n<p>华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。</p>\n<p>实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。<b>据<a href=\"https://laohu8.com/S/601555\">东吴证券</a>测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。</b></p>\n<p>今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、<a href=\"https://laohu8.com/S/601318\">中国平安</a>、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。</p>\n<p><b>除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。</b></p>\n<p>8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、<a href=\"https://laohu8.com/S/00810\">中国互联网投资</a>基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本<a href=\"https://laohu8.com/S/CHN\">中国基金</a>、招商局创投、字节跳动、小马智行、五源资本等。</p>\n<p><b>不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。</b></p>\n<p>为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。</p>\n<p>“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。</p>\n<p>但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。</p>\n<p>此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。</p>\n<p>对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。</p>\n<p>鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。<b>他预计,10年内会出现一批技术领先的国产GPU、DPU企业。</b></p>\n<p>“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。</p>\n<p>壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。</p>\n<h2>百亿DPU芯片市场“爆火”</h2>\n<p>在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。</p>\n<p>2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)</p>\n<p>CPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。<b>2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。</b></p>\n<p>究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。</p>\n<p>据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。</p>\n<p>业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。</p>\n<p>章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。</p>\n<p><b>随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。</b></p>\n<p>今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成<a href=\"https://laohu8.com/S/00700\">腾讯</a>投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。</p>\n<p>“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。</p>\n<p><b>头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。</b>同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。<img src=\"https://static.tigerbbs.com/7170c585dab44018726df81a32c63d62\" tg-width=\"808\" tg-height=\"500\" referrerpolicy=\"no-referrer\" width=\"100%\" height=\"auto\"></p>\n<p>中国DPU市场规模,2020-2025年预测,来源:头豹研究院</p>\n<p>鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。</p>\n<p>以<a href=\"https://laohu8.com/S/600918\">中泰证券</a>为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。</p>\n<p><b>不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。</b></p>\n<p>芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。</p>\n<p>也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。</p>\n<p>正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”</p>\n<p>章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。</p>\n\n</article>\n</div>\n</body>\n</html>\n","type":0,"thumbnail":"https://static.tigerbbs.com/01e0bbbfdbdc6f8f2f7ce512582f7c3e","relate_stocks":{"NVDA":"英伟达"},"is_english":false,"share_image_url":"https://static.laohu8.com/e9f99090a1c2ed51c021029395664489","article_id":"2166195813","content_text":"英伟达CEO黄仁勋(图片来源:Nvidia官网)\n“我即将展示的产品,融合了新的GPU加速计算能力,拥有Mellanox高性能网络,补足我们最后一块拼图的产品是——全球首款专为TB级数据中心加速计算而设计的CPU处理器,它的秘密代号是Grace。”\n这是2021年4月英伟达(NVIDIA)CEO黄仁勋在GTC峰会演讲中的一段话。然而,让人意想不到的是,直到8月12日英伟达自曝后人们才知道,这段不足100字、14秒的演讲内容竟然不是黄仁勋本人出镜,而是使用了合成的“数字替身”,即利用英伟达GPU处理器与Omniverse软件平台共同形成的“虚拟黄仁勋”形象。\n这一事件引发了人们对虚拟现实、元宇宙、AI换脸等技术和概念的激烈讨论,同时也让“英伟达”这家美国芯片霸主从半导体行业“出圈”,走入了大众视野。\n自1993年成立至今,在黄仁勋的带领下,英伟达成功创造且引领了GPU(图形处理器)芯片这一类别,产品覆盖整个PC设备GPU至服务器GPU市场。过去五年内,英伟达市值从310亿美元增长到5050亿美元,跻身成为全球第七大半导体供应商,是人工智能(AI)芯片领域炙手可热的明星企业。\n与此同时,在英伟达市值超过英特尔之后,国内半导体市场看到了GPU、AI芯片赛道更大的市场机会,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。\n近两年,国内半导体产业发生着转变。由于华为海思、中芯国际等企业受美方“实体清单”影响,以及全球芯片短缺引发的连锁反应,使得中国企业愈加难采购到美国半导体产品,对于“国产替代”需求愈加强烈。\n2020年6月29日,由于美国《出口管理条例》再升级,实体清单企业成员在不断调整,英特尔“临时性暂停”对浪潮集团的芯片供货。\n尽管随后在7月3日,浪潮方面宣布英特尔已恢复对其供货,但一家是全球最大的PC、云服务x86架构芯片供应商,另一方是中国最大的服务器厂商,两家公司之间的临时断供危机,为整个中国云计算、半导体行业提了一个醒:随着算力需求越来越强烈,中国需要大规模生产全面自主可控的国产GPU、服务器芯片产品。从而凸显了“国产替代”正成为中国半导体行业发展的最大驱动力。\n另外,作为全球芯片销量大国,中国却没有出现一家“英伟达”这样的芯片巨头,大市场并没有产生与之匹配的大公司。根据IC Insight的统计显示,2020年全球半导体市场规模为3957亿美元,其中,中国大陆市场规模是434亿美元,为全球最大市场,占全球比例达到36.24%。然而,总部位于中国大陆的半导体公司2020年总产值仅为83亿美元,仅占市场规模的5.9%。\n偌大的蛋糕,究竟谁能切下一角?半导体产业何时才能造出“中国英伟达”?\n错失黄金时代\nGPU图形处理器又被称为显示芯片、视觉处理器,最初于1999年由英伟达提出,是个人电脑、工作站、游戏主机以及移动设备(智能手机、平板电脑、VR设备)上专门运行绘图运算的微处理器。\n随着GPU的并行计算优势被逐步挖掘,GPU的应用领域从图形处理扩展到高性能计算,逐步成为Al计算最成熟、应用最广泛的通用型芯片。2020年6月,英伟达推出基于安培(Ampere)架构的A100 Tensor Core GPU,成为全球性能最强的AI芯片。\n以应用终端角度分类,GPU可分为PC端GPU、服务器GPU和移动端GPU,对应三种架构,即与专用电路板及组件组成的独立显卡,共享集成显卡,以及移动端GPU与其他芯片或模块一起封装成高集成度的SoC——应用于手机、汽车电子、AI在内的多个应用场景。\n自从AMD在2006年收购加拿大GPU厂商ATI之后,目前,在PC及服务器GPU领域,全球GPU市场呈现“美国芯片三巨头”——英特尔、AMD和英伟达垄断的局面。集成GPU市场英特尔优势明显,独立GPU市场英伟达和AMD两强割据。\n根据研究机构Jon Peddie Research的数据显示,2021年第一季度,全球PC端GPU市场中,英特尔(Intel)以68%市场份额位居榜首,AMD和英伟达分别为17%和14%,三家共计份额接近100%;全球独立GPU领域中,英伟达是数据中心GPU市场领导者,占据81%的市场份额,拥有领先优势,AMD则以占比19%位居第二。\n仅2019年,英伟达凭借V100系列等产品,占据了中国AI训练芯片市场90%份额,牢牢掌握着中国这一庞大的AI芯片销售市场。\n英伟达能持续作为“芯片霸主”地位的核心原因之一在于其“轻设计模式”。英伟达不做芯片制造和封装,交由台积电代工完成,自身享受7nm等先进制程工艺技术红利。根据财报显示,2016年至2021年期间,英伟达收入增长了233%,营业利润翻了一番,达到45亿美元。在截至今年5月的三个月内,销售额同比猛增84%,毛利率则达到了64%。\n事实上,中国很早就进入了GPU芯片设计领域,但结果并不如意。\n从20世纪70年代开始,中国开始引进半导体与集成电路技术和生产线。但结果却是陷入了“代代引进、代代落后”的恶性循环,加上“汉芯一号”假芯片事件给社会带来的不良影响,让中国的“自主处理器”遭受严重挫败,以及中国积极推动WTO全球化等因素,从而错失了全球半导体产业发展的黄金时期,下游企业只能“造不如买”。\n到2000年,以国家“18号文件”出台为标志,中国半导体才逐渐形成设计、制造、封装测试“三业分离”的产业组织形态,引进以“中芯国际”为代表的一批芯片制造(Foundry)企业在华建设、投产,技术水平也因此得到快速提升。\n目前,景嘉微、天数智芯、登临科技、壁仞科技、燧原科技、寒武纪、沐曦集成电路等企业均在通用处理器这一赛道中集聚。\n2014年,以军机图形显示控制模块起家的“景嘉微”(300474.SH)成功研制出军用GPU芯片JM5400,随后在2018年成功研发出28nm制程工艺的第二代GPU芯片JM7200。景嘉微从军用定制走向通用GPU,成为全球少数、国内唯一实现独立GPU商用量产的公司。\n除景嘉微外,2021年3月天数智芯发布了国内首颗7纳米工艺制造的GPGPU(通用图形处理器),即去掉了传统GPU 30%的图形渲染部分,只为处理人工智能(AI)应用而生;燧原科技则在今年6月发布了迄今中国最大的AI计算芯片“邃思2.0”AI芯片、基于邃思2.0的“云燧T20”训练加速卡和“云燧T21”训练OAM模组。\n但值得注意的是,景嘉微研发的JM7200芯片,性能只相当于2012年英伟达GTX 640水平,难以满足企业客户的应用需求。即便燧原科技的“邃思2.0”AI芯片,也仅和英伟达的A100达成平手,Benchmark测试的6个项目中有2项大幅超越了英伟达A100的性能表现。(详见钛媒体App前文:《燧原科技发布中国最大的AI计算芯片,加速推进三大业务方向落地》)\n\n背后的原因,主要由于中国半导体产业起步晚,芯片的技术门槛高、成本弹性大、产业高度集中,使得中国GPU芯片企业的整体研发投入、技术、人才都滞后于国外,从而在产品性能和技术上依然和芯片巨头有差距,下游企业依然难以脱离“美国芯片三巨头”的境地。\n以研发投入为例,2011年至2020年的十年间,景嘉微的研发投入费用总额为人民币6.27亿元,而英伟达2020年这一年的研发投入就达到39.24亿美元,约合人民币253.23亿元,十年间英伟达总计投入超过1200亿元人民币,两者相差超190倍。\n在人才方面,截至2021年上半年,英伟达员工人数高达18975人,景嘉微总员工人数为1174人,远低于AMD在上海研发中心的2000名员工。\n“AI芯片、GPU芯片市场比较特殊,跟传统的专用处理器不一样,技术十分复杂。它需要大量的数据,需要和特定的算法结合,才能够付诸市场运用。”新思科技中国副总经理谢仲辉在今年4月接受钛媒体App独家专访时表示,如果企业想把首颗AI芯片做扎实,通常需要两三年以上。\n在他看来,芯片半导体本身是一个投入大、周期长、见效慢的行业,技术完全国产化需要长期持续的资金、人才和技术积累,很难用“砸金钱见回报”这种互联网思维来处理。\n此外,结合CUDA技术的软硬件生态,也是国内芯片企业与英伟达形成较大差距的另一重要原因。\n2006年,英伟达就发布了并行计算平台CUDA,其中包含一系列开发工具,只有安装使用这个平台才能够进行复杂的并行计算,任何人只要拥有一台配有英伟达GPU的笔记本电脑,就可以利用CUDA可以进行科学、便捷编程计算,比如深度学习、AI算法等,开发相关软件。过去十多年,英伟达坚持不懈地推广CUDA,使更多政企级类型软件都基于该平台开发,将英伟达自研GPU硬件与CUDA软件相结合,高效实现应用落地。\n相比之下,目前国内却没有一个类似CUDA和英伟达硬件深度绑定的系列平台,技术壁垒差距十分明显。大部分国产GPU厂商均采取兼容CUDA开源框架的策略,如天数智芯、登临等,准备在此基础上培育自己的软件生态。\n“短期来看,国产GPU兼容CUDA更容易发展,毕竟写算子是人力密集型行业,用户迁移的话是需要100%迁移、整套代码都要在你的片上跑,如果代码量很小,需要的算子不那么多,难度就比较低。但是长期来看,还是要摆脱兼容思路,发展自有的核心技术。”芯片行业内人士表示,选择兼容主要是确保已有软件依然可用,未来会不断改进自家平台,使其更加匹配自己的芯片,从而吸引开发者迁移。\n但也有企业选择不兼容CUDA生态,比如同时做AI训练和推理芯片的燧原科技,今年全面升级了其“驭算TopsRider”软件平台以及全新的“云燧集群”,希望能拥有生态主导权。\n总结来看,对标英伟达的这些国内芯片企业依然处在发展的初级阶段,AI芯片技术的产业化、市场化能力较弱,没有产生实际的大规模使用,距离超越或取代“中国英伟达”仍然有很长的路要走。\n中科驭数CEO鄢贵海在接受钛媒体App采访时表示,虽然目前中国需求侧虽然还是全球最大的单一市场,增速也名列前茅,“需求侧”还是很强劲的,但在高端芯片方面无论是设计还是制造还有不小差距,“供给侧”不够强大。他指出,供给侧的优劣不仅取决于一家企业,而是全产业链能力。短期内要想打造出这样大体量和全面引领性的企业还是不太现实的。\n中科驭数成立于2018年,是一家专用计算架构研发商,孵化自中科院计算所的计算机体系结构国家重点实验室,如今公司估值已超10亿元。今年7月27日,中科驭数完成数亿元A轮融资,由华泰创新领投,灵均投资以及老股东国新思创跟投。\n高瓴合伙人、高瓴创投软件与硬科技负责人黄立明在接受钛媒体App的独家专访时表示,虽然GPU市场前景广阔,但中国创业公司很难直接做成“英伟达”。除了技术难度外,还要结合很强的应用来做——涉及到软件系统软件生态,这对创业公司来说要求是极高的。\n高瓴于2020年2月推出独立VC品牌高瓴创投,此后其对芯片半导体领域进行投资入局,其中包括半导体IP企业芯耀辉、EDA厂商芯华章,GPU平台壁仞科技、DPU公司星云智联,加上碳化硅方面的天科合达、光芯片领域的敏芯半导体、以及手机基带星思半导体等。\n黄立明强调,能在这个方向跑出来的公司,无论海外还是国内,高瓴判断最终都不会有很多。\n风口已至\n“我们现在先不纠结于怎么去取代英伟达,路都是一步一步走的。我觉得首先中国得有国产AI芯片、通用GPU、FPGA等底层算力。只要国内有市场需求,我们一定有很多机会。”华映资本主管合伙人章高男对钛媒体App表示,国内半导体产业风口已至,中国现在切入GPU市场是“天时、地利、人和”皆备,尤其半导体和下一代AI技术都是中国必须突围的领域。\n章高男举了一个例子,金山办公产品虽然逊于微软Office套件,但市场给出1100多亿元市值,背后重要原因之一是,中国必须得有国产office,同样道理也适用于国产的GPU市场。\n华映资本是国内最早布局移动互联网和文化产业的私募股权基金之一,近几年To B领域也成为华映资本重点关注的投资领域。目前华映资本在To B领域投资的30余个项目,投资总额超7亿元生态,由技术型投资人章高男负责搭建。在数据中台及底层算力相关领域,华映资本投资布局了壁仞科技、天云大数据,中科海微等项目。\n实际上,作为横跨视觉计算和AI计算的通用平台,GPU拥有巨大的市场空间。据东吴证券测算,预计到2027年,GPU领域国产替代的市场空间规模超过341亿美元。除了既有的游戏市场,在工业、医疗、军事航天等方向都有进一步的发挥空间。\n今年3月,原商汤科技总裁张文联合创立的通用智能芯片设计商“壁仞科技”完成了B轮融资。2019年9月成立以来,公司总融资额超47亿元人民币,投资方包括高瓴创投、华映资本、中国平安、招商局资本、BAI资本、国盛集团国改基金等,估值已超过100亿元,成长半导体行业势头最为迅猛的“独角兽”企业之一。\n除壁仞外,沐曦集成电路、摩尔线程等入局GPU领域的企业也都完成了融资。\n8月25日,GPU厂商沐曦集成电路宣布完成10亿元人民币的A轮融资,创始人陈维良、杨建等均来自美国芯片巨头AMD,投资方包括中国国有企业结构调整基金股份有限公司、中国互联网投资基金、经纬中国、和利资本、红杉中国、光速中国、国创中鼎、智慧互联产业基金、上海科创基金、联想创投等;而2020年成立的摩尔线程,宣称100天内就完成了两轮数十亿元融资,团队成员主要来自英伟达,投资方包括深创投、红杉资本中国基金、招商局创投、字节跳动、小马智行、五源资本等。\n不过,一个有趣的现象是,壁仞、沐曦、摩尔线程上述三家初创企业是名副其实的“PPT融资造芯”,融资时无一家完成首颗芯片的流片(流水线试生产)。\n为何市场投资人愿意对此敞开钱包?数位投资人在接受钛媒体App采访时表示,这些项目能够获得大量资本支持,原因都为投资早期,主要看的还是团队、赛道两部分:AI芯片赛道风口已至,高管团队也均出自“美国芯片三巨头”。\n“我觉得需要给这些企业机会和耐心,不可能500个人都在写PPT。制造芯片是一个5年到10年的事情,我们愿意去投的原因,并非是投机或者是忽悠。我认为,投半导体赛道本身风险就高,需要做好长周期的打算,需要有足够强的风险承担能力,这和投资互联网的模式创新完全不一样。”上述投资人对钛媒体App表示。\n但也有半导体行业投资人指出,上述投资项目本质上还是希望市值撑高,有更高的回报率,尤其“芯片热”环境下,风投机构需要不断在中早期寻找这些GPU、AI芯片企业标的,希望从中赌得一份更高的回报。\n此外,在这一波GPU创业浪潮中,创始团队师出“美国芯片三巨头”。例如,天数智芯首席科学家郑金山曾任AMD首席技术专家;沐曦的创始团队主要来自AMD,CEO陈维良曾在AMD担任图形研发高级总监,CTO杨建曾任AMD Fellow(院士);壁仞科技最新上任的联席CEO李新荣,曾任AMD全球副总裁,壁仞科技高级副总裁陈文中也曾在AMD任职。\n对此,章高男表示,AMD是GPU领域排名前二的芯片巨头,关于GPU核心研发都在上海,而图形渲染的研发是在美国,企业可以去找AMD和英伟达两家公司高管去沟通,而最终选择的人肯定是半导体行业内的佼佼者。\n鄢贵海认为,在细分新兴赛道,凭借需求侧的应用“势能”,中国芯片企业集中优势兵力,立足服务本土企业,突出开发的敏捷性,是有机会在产品定义、方案迭代周期上超越“英伟达”这些芯片巨头。他预计,10年内会出现一批技术领先的国产GPU、DPU企业。\n“芯片产业五个环节:设计、制造、封测、材料、EDA五个环节中,与应用最相关的是设计,我们最大的优势又在于应用,所以非常有机会在“设计”这一环节取得突破,然后以点带面,逐步扩大胜利版图。所谓“弯道超车”还是追赶策略,切入面向未来的新赛道并且全力加速才更有可能占据新的战略制高点。希望能在10年内能出现一批技术领先、产品扎实而且富有战略意识的企业。”鄢贵海对钛媒体App表示。\n壁仞科技创始人张文表示,对芯片公司的能力要求从产品级提升到系统级和生态级。时间上不超过5年,中国在AI芯片设计领域赶上甚至领先国际水准。他强调,超越英伟达,需要重新定义一个产品,以及重新定义一个市场。\n百亿DPU芯片市场“爆火”\n在黄仁勋看来,负责在数据中心传输和处理数据的数据处理单元(DPU),正与CPU、GPU共同组成“未来计算的三大支柱”。当中国芯片企业发力GPU时,英伟达则把目光放在了CPU、DPU这两个新市场中。\n2020年9月,英伟达宣布拟以400亿美元,从日本软件集团处收购英国芯片设计商Arm,预计写下半导体行业最大的并购案。但这笔交易存有争议,目前还等待欧盟、英国、美国和中国等政府的批准。但2021年4月,英伟达则宣布进军数据中心CPU市场,发布Grace CPU处理器,也就是本文开头黄仁勋所讲的那一段话。(详见钛媒体App前文:《英国政府出手干预,英伟达400亿美元并购Arm交易生变》)\nCPU和GPU之外,英伟达还在布局DPU。2019年,英伟达宣布以69亿美元全现金的形式收购以色列网络芯片商迈络思(Mellanox),并最终将其拿下。而这笔英伟达有史以来规模最大的收购,黄仁勋最看重的就是迈络思在数据中心技术等方面独步天下的能力。2020年10月,英伟达首次推出了DPU — NVIDIA BlueField系列数据处理器。\n究其根本,一方面DPU更灵活安全,更重要的是,DPU可以解放CPU的算力,释放服务器的负载,并凭借低功耗显著降低综合成本,甚至还可以改善AI和机器学习应用的性能。\n据IDC统计,全球算力的需求每3.5个月就会翻一倍,远远超过了当前算力的增长速度。在此驱动下,全球计算、存储和网络基础设施也在发生根本转变:一些数据量过大的工作负载,过多占用CPU资源,与之协同作战的各种“X”PU芯片便应运而生,GPU、FPGA等芯片之外,DPU就是下一个“X”PU。\n业内人士就此做了一个形象的比喻,网络就像造马路,以前1G 10G时代马路已经不够宽了,车子越来越多,为了平衡压力,通过增加红绿灯和投入更多的交警来更高的协调资源,这样已经让原来的效率提高很多,但是仍然不够。必须第一扩大马路,这就是带宽增加,但是马路从2道变为4道,仅仅依靠红绿灯和有限的交警还是会堵塞,但是我们不能无限增加交警,这就需要马路能更加智能,帮助解决拥堵。\n章高男指出,大量的网络管理在CPU里面,占据了容器能力,而DPU则是将服务器智能提供空间能力,大量虚拟化空间可以提高算力需求。\n随着2020年,DPU的名声超出了竞争对手英特尔所推出的基础设施处理器(IPU)和SmartNIC,也让每个对数据中心业务虎视眈眈的企业都要在这个领域分一杯羹。DPU成为了各大芯片巨头、初创公司争相研发的新赛道,国产DPU现在几乎处在百花齐放的状态,红杉、高瓴创投、鼎晖、软银中国都开始入场。\n今年4月,天眼查数据显示,国产DPU芯片供应商“云豹智能”完成腾讯投资、红杉资本、耀途资本等联合的天使轮融资;5月末,芯启源完成数亿元Pre-A轮融资,投资方包括软银中国、浦东科创集团等;7月27日,DPU芯片研发商“中科驭数”完成华泰创新领投的数亿元A轮融资;8月30日,DPU芯片研发商星云智联宣布完成了数亿元天使轮融资,由高瓴创投领投,鼎晖VGC、华登国际中国基金参与跟投;9月初,IDG资本豪掷“云脉芯联”天使轮融资项目。\n“DPU有可能成为继CPU和GPU之后的第三颗算力芯片,但从结构上来看,DPU会更异构、也更专用。”鄢贵海在接受钛媒体App等采访时表示,DPU产生的背景是智能时代数据爆发导致的端-边-云一体化趋势带来的对计算延迟、数据安全、资源虚拟化需求。CPU对这些非业务性负载已不堪重负,迫切需要一个理想的对象来分担这些计算负载。\n头豹研究院则预测,中国DPU市场规模预计将在2025年达到37.4亿美元。全球DPU市场规模2025年预计将达到135.7亿美元。同时报告也指出,数据流通是DPU最大的应用市场,其中裸金属服务其对DPU存在刚需。DPU在电信市场的应用主要为边缘计算场景,渗透率不足5%。针对智能驾驶领域的DPU仍在探索阶段,预计在2023年DPU才有望布局在智能驾驶领域。\n中国DPU市场规模,2020-2025年预测,来源:头豹研究院\n鄢贵海指出,CPU的性能从5-10年前每年30%的增幅,到三年前大概只有每年不到3%的性能增幅。而网络带宽每年依旧还有35%左右的增长。\n以中泰证券为例,当时该公司遇到的挑战是,交易报单合规检查太慢,需要提高交易效率。于是,中科驭数与中泰证券、上交所技术有限责任公司联合研发了一套极速风控系统解决方案,来加速这一流程。中科驭数相继研发了超低时延智能网卡、数据计算加速卡等多套产品和解决方案,主要面向高带宽、低时延、数据密集型等场景。该公司今年已经实现千万级别的季度营收。中科驭数的下一代DPU芯片预计将于2021年底完成设计,预计可处理高达200G网络带宽数据。\n不过,DPU市场虽然火爆,但概念较新,未知更多,投资风险也会更大。\n芯启源CEO卢笙指出,目前DPU细分赛道的壁垒还是相对较高的,除了技术壁垒之外,还有市场的壁垒,需要客户不断迭代,尤其是配合开源软件不断升级去适配客户快速变化的软硬件环境。因此VC(风险投资)在投资之前,一定要先认可赛道,且有足够的耐心。他强调,投资人需要对市场进行不断地观察并调整判断,现在谁也无法预料未来DPU发展前景。\n也有媒体认为,当英伟达进入新开辟的CPU和DPU战场,对中国的GPU厂商或许是个利好,尤其英伟达依然花大量精力放在400亿美元收购英国芯片设计商Arm公司的并购交易上,这对新创GPU企业而言,可能是个追赶的时机。\n正如章高男对钛媒体App所说,“从逻辑上讲,门槛不高的事情通常稀缺性都不高。(芯片半导体赛道)有些事情是很难的,需要长时间投入,虽然是高风险,但总归得有人去做。这是真正对国家有利的长远投入,其实应该鼓励投资。否则的话,这些需要长时间投入的难事,谁都不去做,你永远上不了台阶。”\n章高男强调,虽然风险投资肯定要追求回报,但他认为,在整个资金分配合理情况下,拿出一部分投资半导体赛道的初创企业,不仅有极强的社会意义,更是某种长期价值投资的重要体现。","news_type":1},"isVote":1,"tweetType":1,"viewCount":2681,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832234984,"gmtCreate":1629636629148,"gmtModify":1629636629148,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"authorIdStr":"3545990537092247","idStr":"3545990537092247"},"themes":[],"htmlText":"中芯国际和百度,值得投资。","listText":"中芯国际和百度,值得投资。","text":"中芯国际和百度,值得投资。","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":4,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832234984","repostId":"1164432970","repostType":2,"isVote":1,"tweetType":1,"viewCount":2665,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":814256789,"gmtCreate":1630831004241,"gmtModify":1630831004241,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"authorIdStr":"3545990537092247","idStr":"3545990537092247"},"themes":[],"htmlText":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","listText":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","text":"就像扎克伯克需要培养在中国的形象一样?别个是商人,利益才是至上的。亚马逊不需要中国,亚马逊没倒闭嘛!模式都不一样!","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":2,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/814256789","repostId":"1175054400","repostType":4,"repost":{"id":"1175054400","pubTimestamp":1630805223,"share":"https://www.laohu8.com/m/news/1175054400?lang=&edition=full","pubTime":"2021-09-05 09:27","market":"us","language":"zh","title":"张一鸣和扎克伯格,一生之敌","url":"https://stock-news.laohu8.com/highlight/detail?id=1175054400","media":" 字母榜","summary":"张一鸣和扎克伯格再次狭路相逢。\n8月31日,Pico发布全员信,证实该公司被字节跳动收购。据业内人士透露,张一鸣以数十亿元的价格压倒腾讯,拿下了这家目前国内规模最大的虚拟现实企业。\n不少人将这次收购与","content":"<p>张一鸣和扎克伯格再次狭路相逢。</p>\n<p>8月31日,Pico发布全员信,证实该公司被字节跳动收购。据业内人士透露,张一鸣以数十亿元的价格压倒腾讯,拿下了这家目前国内规模最大的虚拟现实企业。</p>\n<p>不少人将这次收购与2014年Facebook花30亿美元收购Oculus对标,认为张一鸣此举,是为了给字节拿到一张元宇宙的入场券。</p>\n<p>2014年,Facebook以近30亿美元的价格收购Oculus,其中现金部分只有4亿美元,剩余部分以Facebook股票支付,这些股票的价格已经涨了4倍,相当于当年的收购总值已超过50亿美元。其创始人扎克伯格曾不止一次表示,他看好VR/AR作为下一代计算平台的信心,“我们一直相信当活跃用户到大约1000万时,使用VR的人们的市场就足够大了,对于开发人员而言,这都是值得的,要为此开始开发。”更为重要的是,Facebook确实给予了非常高的投入。</p>\n<p>对于字节跳动来说,之前1亿元投资元宇宙概念公司代码乾坤似乎更像是小试牛刀,如今豪掷近百亿收购一家VR硬件公司,完成了对Facebook在某种程度的追赶。两家公司也因此有了更多的商业纠葛。</p>\n<p>Pico作为一家VR软硬件研发制造商,除了致力于虚拟现实软硬件的研发,同时也涉及虚拟现实内容及应用的打造,几乎和Oculus一样,都是在为VR终端用户提供从完整的产品与服务体验。而且,Pico的大股东歌尔声学作为知名的硬件代工厂,也是Facebook旗下Oculus Quest系列的主要代工厂之一——这也是Pico的产品能够在很多层面非常接近Oculus Quest 2的重要因素,尽管Quest 2并未在国内销售,但其中的利益冲突依然存在。</p>\n<p>在此之前,字节跳动就曾与Facebook站在了对立面。2017年,TikTok的前身,美国初创公司 Musical.ly深受美国青少年群体欢迎,Facebook 曾考虑过将其收入囊中,但被字节跳动抢先一步。这次收购失败,也导致了后来Facebook一直在短视频领域被TikTok压制。</p>\n<p>智能推荐赋能的短视频抢占了大量用户时间,这在一定程度上造成了Facebook的影响力下降。2020年Tik Tok全球下载量超过了Facebook,Facebook在北美市场陷入了用户“0增长”困境。Facebook后来通过推出各种短视频产品,来抵抗Tik Tok带来的冲击,但收效甚微。去年,因为在Tik Tok封禁风波中的表态,扎克伯格在中国的形象一落千丈。</p>\n<p>张一鸣在公司成立两三年接受采访时曾将Facebook作为榜样,而如今,不管是通过硬件布局“元宇宙”还是短视频领域,他与扎克伯格已然站到了对立面。</p>\n<p>随着技术发展趋缓,科技公司想要持续增长,必然会攻入新的领域,张一鸣与扎克伯格未来或将展开更激烈的竞争。</p>\n<p>A</p>\n<p>短视频成为时代主流的同时也使得Facebook的广告价值大幅度削弱,广告营收占比98%的Facebook陷入了社交疲软的困境,虽然2021年Q2营收大增,但财报公布后股价却下跌3%。</p>\n<p>停滞的当下与不乐观的未来迫使Facebook寻找新的流量出路以及给资本一个新交代。而元宇宙则是最好的故事,Roblox所描述的元宇宙背后不仅有社交,还有年轻化的受众群。</p>\n<p>2016年4月中旬扎克伯格在F8开发者大会,亮出了Facebook的10年规划,这也是扎克伯格第一次清晰的描绘出该公司发展愿景,会上主要提出三大目标:全球互联,人工智能和虚拟现实/增强现实。</p>\n<p><img src=\"https://static.tigerbbs.com/f244b1a7d2035a0a010c8991da11407b\" tg-width=\"1400\" tg-height=\"1090\" referrerpolicy=\"no-referrer\"></p>\n<p>这也是扎克伯格买下Oculus的原因之一。Oculus主打产品为Oculus Rift,致力于通过技术改进人们玩视频游戏的体验,是一个头戴式游戏眼镜,融合虚拟现实技术。对于扎克伯格来说,Oculus的核心价值有机会创造有史以来最具社交的平台,与Facebook结合,在虚拟场景中改善工作、娱乐和交流的方式,符合Facebook的战略需要。</p>\n<p>由公开数据看出,目前Oculus Quest 2上线社交平台Facebook Horizon,不仅可以在线社交中只通过文字、图片和语音进行互动,还能解决过去在使用VR应用时产生的孤独感,同时还可以创建角色,和朋友聚会等。</p>\n<p>在扎克伯格的元宇宙概念中,Oculus的定位变成了“硬件+操作系统+内容生态+应用商店分发+社交”的下一代超级平台,在这个定位下,Facebook的元宇宙概念逐渐清晰。在今年7月29日的财报会议中,扎克伯格宣布,Facebook将在五年内转型成为“元宇宙 (Metaverse) ”公司,并从各业务部门抽调得力人手推动落实。</p>\n<p>扎克伯格的布局与推进,给张一鸣的“元宇宙”战略打了个样。</p>\n<p>字节跳动想要凭借自身的社交、内容、全球化优势,将Tiktok、飞书(Lark)应用到下一代颠覆手机的终端设备中,去构建属于自己的“元宇宙”。它的元宇宙布局也在不断深化。今年4月份,其斥资1亿元投资了元宇宙概念公司代码乾坤。官网显示,代码乾坤成立于2018年,公司产品有青少年创造和社交UGC平台《重启世界》(Reworld),该产品与“元宇宙第一股”Roblox颇为相似。</p>\n<p>如果说投资代码乾坤,只是字节跳动杀入元宇宙的第一步。那么,如今收购Pico则意味着张一鸣的元宇宙野心再次加速。</p>\n<p>对字节跳动而言,收购一家VR硬件公司仅仅只是一个开始,要真正保持竞争力并搭建起元宇宙的基础框架,后续在软件生态、VR穿戴设备上必须保持持续的投入。</p>\n<p>B</p>\n<p>如果说布局元宇宙是扎克伯格为张一鸣带路,那在短视频领域,张一鸣毫无疑问是扎克伯格的老师。</p>\n<p>2019年,短视频的崛起,让扎克伯格充分意识到了中国公司的强大竞争力。短视频有着全球通用的语言,病毒式传播的特点,争夺的是全球年轻用户的时长。</p>\n<p>从用户群体角度,相关数据显示,TikTok用户中,18-24岁占35.3%,为所有用户中比例最大的群体,同时,25-34岁的用户群体占比也在快速上升,这些群体是被众多广告商所看重的中坚力量。而Facebook的营收几乎全部来自广告,2019年其广告营收占比达到98.53%。“移动社交+广告”是理想的商业模式,但前提是用户一直增长,而且愿意在平台上消耗时间。TikTok在欧美市场崛起、不断获得优质用户,对Facebook的广告收入是个潜在的威胁。</p>\n<p>不过,TikTok在海外突飞猛进的成绩,也离不开在Facebook上异常激进的投放,据说TikTok有短时间每天花在营销上的费用是100万美元。但是因为最初内容创作者和消费者双边网络的规模效应还没起来,TikTok留存太低,Facebook一心想赚推广费,并没有将TikTok视作威胁。</p>\n<p>2018年下半年,Facebook开始采取反击行动,推出了一款几乎照搬TikTok模式的应用程序Lasso。但相较于TikTok当时已经出现的病毒式传播效应,Lasso从一开始就输在了起跑线上。同样的一个视频在TikTok上能收获成百上千的赞和视频,而在Lasso上只有几个或几十个。</p>\n<p>Lasso发布后一年,全球仅被安装了42.5万次,而TikTok在中国以外的市场同期被安装了6.4亿次。2020年7月10日,Facebook正式宣布关闭Lasso。但Facebook在抄袭TikTok上并不死心。这一次,在后来的尝试中,Facebook决定依托于自己已有的流量平台来实现弯道超车。</p>\n<p>为了打击竞争对手,扎克伯格开始在各个场合发表批判Tik Tok的言论。2019年10月,扎克伯格在美国华盛顿的乔治敦大学发表了一场35分钟的演讲,公开批评中国互联网公司对内容进行审查,并点名批评了TikTok。去年七月,当Facebook、苹果、谷歌、亚马逊四家科技巨头齐聚美国国会反垄断听证会时,Facebook创始人扎克伯格直接将刀锋对准中国科技公司,公开抨击其互联网价值观,认为TikTok等产品对美国的安全造成了直接威胁。</p>\n<p>2020年8月,在Tik Tok面临高密度监管的当口,Facebook同时在美国和其他50多个国家推出了嵌入在Instagram上的应用程序Reels,Reels允许用户制作和发布15秒短视频,提供海量音乐库,视频发布算法还可以让用户看到最热门视频,而不是针对用户偏好定制的个性化内容。这样的功能,被认为是复制版的Tik Tok。</p>\n<p>去年8月2日,</p>\n<p>字节跳动的深夜声明将枪口对准了Facebook,张一鸣正式对扎克伯格宣告开战。</p>\n<p>声明中,字节跳动表示在致力于成为一家全球化公司的过程中,其面临着各种复杂和难以想象的困难,“包括紧张的国际政治环境、不同文化的碰撞与冲突、竞争对手Facebook的抄袭和抹黑。”</p>\n<p>不过,即便遭遇监管打击与巨头的抄袭几家,Tik Tok一路高歌猛进。根据Sensor Tower的最新数据,TikTok 是2021 年上半年全球下载量最大、收入最高的非游戏应用程序。今年第二季度,TikTok 的消费者支出实现了自 2020 年第二季度以来最大的环比增长,从上一季度的 3.847 亿美元攀升 39% 至 5.346 亿美元。</p>\n<p><img src=\"https://static.tigerbbs.com/1950aaa91cca02ed37d6a1ad41a2bc10\" tg-width=\"1400\" tg-height=\"926\" referrerpolicy=\"no-referrer\"></p>\n<p>图说...</p>\n<p>目前,TikTok也成为继WhatsApp、Messenger、Facebook和Instagram之外全球第五个下载量超过30亿次的应用程序。而相比之下,</p>\n<p>Facebook的Reels在用户数方面跟Tiktok还存在着数量级的差距。</p>\n<p>C</p>\n<p>从过往的经历来看,扎克伯格与张一鸣,都想要成为赢家,而当他们在踢到铁板时,会通过钞能力将对手收购,终结在竞争中落入下风的局面。</p>\n<p>Facebook与字节跳动在纯线上流量积极枯竭的当下,开始不断探索新生态。VR+游戏就是新生态最直接的体现。</p>\n<p>从去年开始,VR游戏的相关融资增长明显,且投资额开始显著上升,更关键的是部分顶级VR内容厂商已经悉数被收购,光是Facebook一家就已经收购了5家VR游戏企业,其中就包括《节奏光剑》的开发商Beat Games、《Population:One》开发公司BigBox和《Onward》开发商Downpour Interactive。</p>\n<p>字节跳动也在不断加码布局游戏。自从2019年起逐步发力游戏业务以来,字节跳动除了承担自研业务主要力量的朝夕光年外,还先后收购了沐瞳科技、有爱互娱等有不错市场表现的游戏公司,研发实力基本上得到保障。朝夕光年也在进行一些VR相关业务的尝试,如使用体验设备创作全3D内容的虚拟偶像组合A-Soul等等。</p>\n<p>字节跳动此次收购Pico,被认为是希望在游戏领域弯道超车的一种新尝试。</p>\n<p>对字节来说,当下这个时间点谈VR内容布局可能还有点远,毕竟自研的中重度游戏目前还尚未出世,能给VR游戏的资源有限,但现在至少是有了Pico+字节跳动独占内容的苗头,有可能形成竞品见不到的有吸引力的VR体验。</p>\n<p>游戏之外,社交是元宇宙的另一个关键因素。如果说VR硬件是元宇宙的硬件骨架,那么社交关系则是元宇宙的软件灵魂,毕竟没人想在空空如也的虚拟现实里游荡。</p>\n<p>Roblox公司的CEO Dave Baszucki认为,想要构建一个元宇宙,需要满足以下条件:一个虚拟身份;现实感的真人社交;可以从任何地点登录;极低的延迟;大量且多样化的内容;完整的经济系统;具有安全性和稳定性。</p>\n<p>以上述规则来看字节跳动的元宇宙布局,其在社交方面的不足将会成为拖后腿的因素。即便TikTok在国际短视频业务上依然压制着Facebook,但后者总量接近35亿的社交媒体用户,显然才是扎克伯格ALL IN元宇宙的最大底气。虽然Tech星球曾报道称,字节内部正在开发一款元宇宙的社交产品“Pixsoul”,但现在的起步离起效更是遥遥无期。</p>\n<p>目前扎克伯格聚焦元宇宙主要是为了Facebook未来十年的发展, 但也正如他所言,元宇宙绝对不会出自哪一家巨头之手。与互联网一样,元宇宙不是一家的生意,整合行业的能量来自于每个用户,而不是公司。</p>\n<p>从这个角度来看,无论是Facebook还是字节跳动,在构建元宇宙方面,还有很长的路要走。</p>","source":"ZMB","collect":0,"html":"<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<meta name=\"viewport\" content=\"width=device-width,initial-scale=1.0,minimum-scale=1.0,maximum-scale=1.0,user-scalable=no\"/>\n<meta name=\"format-detection\" content=\"telephone=no,email=no,address=no\" />\n<title>张一鸣和扎克伯格,一生之敌</title>\n<style type=\"text/css\">\na,abbr,acronym,address,applet,article,aside,audio,b,big,blockquote,body,canvas,caption,center,cite,code,dd,del,details,dfn,div,dl,dt,\nem,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,html,i,iframe,img,ins,kbd,label,legend,li,mark,menu,nav,\nobject,ol,output,p,pre,q,ruby,s,samp,section,small,span,strike,strong,sub,summary,sup,table,tbody,td,tfoot,th,thead,time,tr,tt,u,ul,var,video{ font:inherit;margin:0;padding:0;vertical-align:baseline;border:0 }\nbody{ font-size:16px; line-height:1.5; color:#999; background:transparent; }\n.wrapper{ overflow:hidden;word-break:break-all;padding:10px; }\nh1,h2{ font-weight:normal; line-height:1.35; margin-bottom:.6em; }\nh3,h4,h5,h6{ line-height:1.35; margin-bottom:1em; }\nh1{ font-size:24px; }\nh2{ font-size:20px; }\nh3{ font-size:18px; }\nh4{ font-size:16px; }\nh5{ font-size:14px; }\nh6{ font-size:12px; }\np,ul,ol,blockquote,dl,table{ margin:1.2em 0; }\nul,ol{ margin-left:2em; }\nul{ list-style:disc; }\nol{ list-style:decimal; }\nli,li p{ margin:10px 0;}\nimg{ max-width:100%;display:block;margin:0 auto 1em; }\nblockquote{ color:#B5B2B1; border-left:3px solid #aaa; padding:1em; }\nstrong,b{font-weight:bold;}\nem,i{font-style:italic;}\ntable{ width:100%;border-collapse:collapse;border-spacing:1px;margin:1em 0;font-size:.9em; }\nth,td{ padding:5px;text-align:left;border:1px solid #aaa; }\nth{ font-weight:bold;background:#5d5d5d; }\n.symbol-link{font-weight:bold;}\n/* header{ border-bottom:1px solid #494756; } */\n.title{ margin:0 0 8px;line-height:1.3;color:#ddd; }\n.meta {color:#5e5c6d;font-size:13px;margin:0 0 .5em; }\na{text-decoration:none; color:#2a4b87;}\n.meta .head { display: inline-block; overflow: hidden}\n.head .h-thumb { width: 30px; height: 30px; margin: 0; padding: 0; border-radius: 50%; float: left;}\n.head .h-content { margin: 0; padding: 0 0 0 9px; float: left;}\n.head .h-name {font-size: 13px; color: #eee; margin: 0;}\n.head .h-time {font-size: 11px; color: #7E829C; margin: 0;line-height: 11px;}\n.small {font-size: 12.5px; display: inline-block; transform: scale(0.9); -webkit-transform: scale(0.9); transform-origin: left; -webkit-transform-origin: left;}\n.smaller {font-size: 12.5px; display: inline-block; transform: scale(0.8); -webkit-transform: scale(0.8); transform-origin: left; -webkit-transform-origin: left;}\n.bt-text {font-size: 12px;margin: 1.5em 0 0 0}\n.bt-text p {margin: 0}\n</style>\n</head>\n<body>\n<div class=\"wrapper\">\n<header>\n<h2 class=\"title\">\n张一鸣和扎克伯格,一生之敌\n</h2>\n\n<h4 class=\"meta\">\n\n\n2021-09-05 09:27 北京时间 <a href=https://www.tmtpost.com/5656052.html><strong> 字母榜</strong></a>\n\n\n</h4>\n\n</header>\n<article>\n<div>\n<p>张一鸣和扎克伯格再次狭路相逢。\n8月31日,Pico发布全员信,证实该公司被字节跳动收购。据业内人士透露,张一鸣以数十亿元的价格压倒腾讯,拿下了这家目前国内规模最大的虚拟现实企业。\n不少人将这次收购与2014年Facebook花30亿美元收购Oculus对标,认为张一鸣此举,是为了给字节拿到一张元宇宙的入场券。\n2014年,Facebook以近30亿美元的价格收购Oculus,其中现金部分只有4...</p>\n\n<a href=\"https://www.tmtpost.com/5656052.html\">Web Link</a>\n\n</div>\n\n\n</article>\n</div>\n</body>\n</html>\n","type":0,"thumbnail":"https://static.tigerbbs.com/f244b1a7d2035a0a010c8991da11407b","relate_stocks":{},"source_url":"https://www.tmtpost.com/5656052.html","is_english":false,"share_image_url":"https://static.laohu8.com/e9f99090a1c2ed51c021029395664489","article_id":"1175054400","content_text":"张一鸣和扎克伯格再次狭路相逢。\n8月31日,Pico发布全员信,证实该公司被字节跳动收购。据业内人士透露,张一鸣以数十亿元的价格压倒腾讯,拿下了这家目前国内规模最大的虚拟现实企业。\n不少人将这次收购与2014年Facebook花30亿美元收购Oculus对标,认为张一鸣此举,是为了给字节拿到一张元宇宙的入场券。\n2014年,Facebook以近30亿美元的价格收购Oculus,其中现金部分只有4亿美元,剩余部分以Facebook股票支付,这些股票的价格已经涨了4倍,相当于当年的收购总值已超过50亿美元。其创始人扎克伯格曾不止一次表示,他看好VR/AR作为下一代计算平台的信心,“我们一直相信当活跃用户到大约1000万时,使用VR的人们的市场就足够大了,对于开发人员而言,这都是值得的,要为此开始开发。”更为重要的是,Facebook确实给予了非常高的投入。\n对于字节跳动来说,之前1亿元投资元宇宙概念公司代码乾坤似乎更像是小试牛刀,如今豪掷近百亿收购一家VR硬件公司,完成了对Facebook在某种程度的追赶。两家公司也因此有了更多的商业纠葛。\nPico作为一家VR软硬件研发制造商,除了致力于虚拟现实软硬件的研发,同时也涉及虚拟现实内容及应用的打造,几乎和Oculus一样,都是在为VR终端用户提供从完整的产品与服务体验。而且,Pico的大股东歌尔声学作为知名的硬件代工厂,也是Facebook旗下Oculus Quest系列的主要代工厂之一——这也是Pico的产品能够在很多层面非常接近Oculus Quest 2的重要因素,尽管Quest 2并未在国内销售,但其中的利益冲突依然存在。\n在此之前,字节跳动就曾与Facebook站在了对立面。2017年,TikTok的前身,美国初创公司 Musical.ly深受美国青少年群体欢迎,Facebook 曾考虑过将其收入囊中,但被字节跳动抢先一步。这次收购失败,也导致了后来Facebook一直在短视频领域被TikTok压制。\n智能推荐赋能的短视频抢占了大量用户时间,这在一定程度上造成了Facebook的影响力下降。2020年Tik Tok全球下载量超过了Facebook,Facebook在北美市场陷入了用户“0增长”困境。Facebook后来通过推出各种短视频产品,来抵抗Tik Tok带来的冲击,但收效甚微。去年,因为在Tik Tok封禁风波中的表态,扎克伯格在中国的形象一落千丈。\n张一鸣在公司成立两三年接受采访时曾将Facebook作为榜样,而如今,不管是通过硬件布局“元宇宙”还是短视频领域,他与扎克伯格已然站到了对立面。\n随着技术发展趋缓,科技公司想要持续增长,必然会攻入新的领域,张一鸣与扎克伯格未来或将展开更激烈的竞争。\nA\n短视频成为时代主流的同时也使得Facebook的广告价值大幅度削弱,广告营收占比98%的Facebook陷入了社交疲软的困境,虽然2021年Q2营收大增,但财报公布后股价却下跌3%。\n停滞的当下与不乐观的未来迫使Facebook寻找新的流量出路以及给资本一个新交代。而元宇宙则是最好的故事,Roblox所描述的元宇宙背后不仅有社交,还有年轻化的受众群。\n2016年4月中旬扎克伯格在F8开发者大会,亮出了Facebook的10年规划,这也是扎克伯格第一次清晰的描绘出该公司发展愿景,会上主要提出三大目标:全球互联,人工智能和虚拟现实/增强现实。\n\n这也是扎克伯格买下Oculus的原因之一。Oculus主打产品为Oculus Rift,致力于通过技术改进人们玩视频游戏的体验,是一个头戴式游戏眼镜,融合虚拟现实技术。对于扎克伯格来说,Oculus的核心价值有机会创造有史以来最具社交的平台,与Facebook结合,在虚拟场景中改善工作、娱乐和交流的方式,符合Facebook的战略需要。\n由公开数据看出,目前Oculus Quest 2上线社交平台Facebook Horizon,不仅可以在线社交中只通过文字、图片和语音进行互动,还能解决过去在使用VR应用时产生的孤独感,同时还可以创建角色,和朋友聚会等。\n在扎克伯格的元宇宙概念中,Oculus的定位变成了“硬件+操作系统+内容生态+应用商店分发+社交”的下一代超级平台,在这个定位下,Facebook的元宇宙概念逐渐清晰。在今年7月29日的财报会议中,扎克伯格宣布,Facebook将在五年内转型成为“元宇宙 (Metaverse) ”公司,并从各业务部门抽调得力人手推动落实。\n扎克伯格的布局与推进,给张一鸣的“元宇宙”战略打了个样。\n字节跳动想要凭借自身的社交、内容、全球化优势,将Tiktok、飞书(Lark)应用到下一代颠覆手机的终端设备中,去构建属于自己的“元宇宙”。它的元宇宙布局也在不断深化。今年4月份,其斥资1亿元投资了元宇宙概念公司代码乾坤。官网显示,代码乾坤成立于2018年,公司产品有青少年创造和社交UGC平台《重启世界》(Reworld),该产品与“元宇宙第一股”Roblox颇为相似。\n如果说投资代码乾坤,只是字节跳动杀入元宇宙的第一步。那么,如今收购Pico则意味着张一鸣的元宇宙野心再次加速。\n对字节跳动而言,收购一家VR硬件公司仅仅只是一个开始,要真正保持竞争力并搭建起元宇宙的基础框架,后续在软件生态、VR穿戴设备上必须保持持续的投入。\nB\n如果说布局元宇宙是扎克伯格为张一鸣带路,那在短视频领域,张一鸣毫无疑问是扎克伯格的老师。\n2019年,短视频的崛起,让扎克伯格充分意识到了中国公司的强大竞争力。短视频有着全球通用的语言,病毒式传播的特点,争夺的是全球年轻用户的时长。\n从用户群体角度,相关数据显示,TikTok用户中,18-24岁占35.3%,为所有用户中比例最大的群体,同时,25-34岁的用户群体占比也在快速上升,这些群体是被众多广告商所看重的中坚力量。而Facebook的营收几乎全部来自广告,2019年其广告营收占比达到98.53%。“移动社交+广告”是理想的商业模式,但前提是用户一直增长,而且愿意在平台上消耗时间。TikTok在欧美市场崛起、不断获得优质用户,对Facebook的广告收入是个潜在的威胁。\n不过,TikTok在海外突飞猛进的成绩,也离不开在Facebook上异常激进的投放,据说TikTok有短时间每天花在营销上的费用是100万美元。但是因为最初内容创作者和消费者双边网络的规模效应还没起来,TikTok留存太低,Facebook一心想赚推广费,并没有将TikTok视作威胁。\n2018年下半年,Facebook开始采取反击行动,推出了一款几乎照搬TikTok模式的应用程序Lasso。但相较于TikTok当时已经出现的病毒式传播效应,Lasso从一开始就输在了起跑线上。同样的一个视频在TikTok上能收获成百上千的赞和视频,而在Lasso上只有几个或几十个。\nLasso发布后一年,全球仅被安装了42.5万次,而TikTok在中国以外的市场同期被安装了6.4亿次。2020年7月10日,Facebook正式宣布关闭Lasso。但Facebook在抄袭TikTok上并不死心。这一次,在后来的尝试中,Facebook决定依托于自己已有的流量平台来实现弯道超车。\n为了打击竞争对手,扎克伯格开始在各个场合发表批判Tik Tok的言论。2019年10月,扎克伯格在美国华盛顿的乔治敦大学发表了一场35分钟的演讲,公开批评中国互联网公司对内容进行审查,并点名批评了TikTok。去年七月,当Facebook、苹果、谷歌、亚马逊四家科技巨头齐聚美国国会反垄断听证会时,Facebook创始人扎克伯格直接将刀锋对准中国科技公司,公开抨击其互联网价值观,认为TikTok等产品对美国的安全造成了直接威胁。\n2020年8月,在Tik Tok面临高密度监管的当口,Facebook同时在美国和其他50多个国家推出了嵌入在Instagram上的应用程序Reels,Reels允许用户制作和发布15秒短视频,提供海量音乐库,视频发布算法还可以让用户看到最热门视频,而不是针对用户偏好定制的个性化内容。这样的功能,被认为是复制版的Tik Tok。\n去年8月2日,\n字节跳动的深夜声明将枪口对准了Facebook,张一鸣正式对扎克伯格宣告开战。\n声明中,字节跳动表示在致力于成为一家全球化公司的过程中,其面临着各种复杂和难以想象的困难,“包括紧张的国际政治环境、不同文化的碰撞与冲突、竞争对手Facebook的抄袭和抹黑。”\n不过,即便遭遇监管打击与巨头的抄袭几家,Tik Tok一路高歌猛进。根据Sensor Tower的最新数据,TikTok 是2021 年上半年全球下载量最大、收入最高的非游戏应用程序。今年第二季度,TikTok 的消费者支出实现了自 2020 年第二季度以来最大的环比增长,从上一季度的 3.847 亿美元攀升 39% 至 5.346 亿美元。\n\n图说...\n目前,TikTok也成为继WhatsApp、Messenger、Facebook和Instagram之外全球第五个下载量超过30亿次的应用程序。而相比之下,\nFacebook的Reels在用户数方面跟Tiktok还存在着数量级的差距。\nC\n从过往的经历来看,扎克伯格与张一鸣,都想要成为赢家,而当他们在踢到铁板时,会通过钞能力将对手收购,终结在竞争中落入下风的局面。\nFacebook与字节跳动在纯线上流量积极枯竭的当下,开始不断探索新生态。VR+游戏就是新生态最直接的体现。\n从去年开始,VR游戏的相关融资增长明显,且投资额开始显著上升,更关键的是部分顶级VR内容厂商已经悉数被收购,光是Facebook一家就已经收购了5家VR游戏企业,其中就包括《节奏光剑》的开发商Beat Games、《Population:One》开发公司BigBox和《Onward》开发商Downpour Interactive。\n字节跳动也在不断加码布局游戏。自从2019年起逐步发力游戏业务以来,字节跳动除了承担自研业务主要力量的朝夕光年外,还先后收购了沐瞳科技、有爱互娱等有不错市场表现的游戏公司,研发实力基本上得到保障。朝夕光年也在进行一些VR相关业务的尝试,如使用体验设备创作全3D内容的虚拟偶像组合A-Soul等等。\n字节跳动此次收购Pico,被认为是希望在游戏领域弯道超车的一种新尝试。\n对字节来说,当下这个时间点谈VR内容布局可能还有点远,毕竟自研的中重度游戏目前还尚未出世,能给VR游戏的资源有限,但现在至少是有了Pico+字节跳动独占内容的苗头,有可能形成竞品见不到的有吸引力的VR体验。\n游戏之外,社交是元宇宙的另一个关键因素。如果说VR硬件是元宇宙的硬件骨架,那么社交关系则是元宇宙的软件灵魂,毕竟没人想在空空如也的虚拟现实里游荡。\nRoblox公司的CEO Dave Baszucki认为,想要构建一个元宇宙,需要满足以下条件:一个虚拟身份;现实感的真人社交;可以从任何地点登录;极低的延迟;大量且多样化的内容;完整的经济系统;具有安全性和稳定性。\n以上述规则来看字节跳动的元宇宙布局,其在社交方面的不足将会成为拖后腿的因素。即便TikTok在国际短视频业务上依然压制着Facebook,但后者总量接近35亿的社交媒体用户,显然才是扎克伯格ALL IN元宇宙的最大底气。虽然Tech星球曾报道称,字节内部正在开发一款元宇宙的社交产品“Pixsoul”,但现在的起步离起效更是遥遥无期。\n目前扎克伯格聚焦元宇宙主要是为了Facebook未来十年的发展, 但也正如他所言,元宇宙绝对不会出自哪一家巨头之手。与互联网一样,元宇宙不是一家的生意,整合行业的能量来自于每个用户,而不是公司。\n从这个角度来看,无论是Facebook还是字节跳动,在构建元宇宙方面,还有很长的路要走。","news_type":1},"isVote":1,"tweetType":1,"viewCount":2487,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832232084,"gmtCreate":1629636279448,"gmtModify":1629636279448,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"authorIdStr":"3545990537092247","idStr":"3545990537092247"},"themes":[],"htmlText":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","listText":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","text":"蔚来车主出事,管别个百度自动驾驶毛事情!☺️","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":1,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832232084","repostId":"2161749025","repostType":2,"repost":{"id":"2161749025","pubTimestamp":1629545880,"share":"https://www.laohu8.com/m/news/2161749025?lang=&edition=full","pubTime":"2021-08-21 19:38","market":"us","language":"zh","title":"百度带了个坏头","url":"https://stock-news.laohu8.com/highlight/detail?id=2161749025","media":"AI财经社","summary":"8月18日,百度将具备最高级别自动驾驶能力的“Apollo汽车机器人”放上世界大会头条时,业界正在进行一场对过度包装智能驾驶技术成熟度的反思。撰文 / 韩什 张汤编辑 / 杨茂8月18日,“百度世界大会2021”上,Apollo自动驾驶成果被放在了首个环节展示。在2017年7月举行的百度AI开发者大会上,李彦宏通过视频直播,展示了一段自己乘坐公司研发的无人驾驶汽车的情景。从2017年至今,百度宣称已同70家车企、600余款车型达成合作。","content":"<html><body><article><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194034606v1971n0tnfzuxpr\"/><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194050263v197g8fr4guw4fy\"/><p><strong>8月18日,<a href=\"https://laohu8.com/S/BIDU\">百度</a>将具备最高级别自动驾驶能力的“Apollo汽车<a href=\"https://laohu8.com/S/300024\">机器人</a>”放上世界大会头条时,业界正在进行一场对过度包装<a href=\"https://laohu8.com/S/5RE.SI\">智能</a>驾驶技术成熟度的反思。高级别自动驾驶技术距离商业化仍然遥远,但对于百度来说,Apollo的商业化进度、何时带来收益,已是李彦宏最常接到的提问,在百度急功近利的营销攻势下,自动驾驶“放卫星”已成常态。</strong></p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194050776v1975llevk3bte5\"/><p><strong>撰文 / 韩什 张汤</strong></p><p><strong>编辑 / 杨茂</strong></p><p>8月18日,“百度世界大会2021”上,Apollo自动驾驶成果被放在了首个环节展示。</p><p>现场,百度创始人、董事长兼首席执行官李彦宏邀请到著名主持人撒贝宁,二人一同坐进Apollo“汽车机器人”,李彦宏抑制不住兴奋,向撒贝宁介绍起这款车,“L5级自动驾驶能力、语音人脸的多模交互能力以及机器人自身的学习进化能力。”</p><p>李彦宏依然是发布会上最得意的人。根据国际汽车工程师学会(SAE)对自动驾驶等级的定义,L5是最高级别的自动驾驶,车辆的控制权由人转移向车。但是,对于L5真正实现的时间,业界认为仍然遥远,这次大会上,李彦宏似乎急于证明他已接近这个目标。</p><p>“现在还没有一个企业敢说自己的汽车完全达到了L3(有条件的自动驾驶),它们还是停留在数值假设的阶段。”中国汽车工程学会名誉理事长付于武告诉AI财经社。</p><p>当李彦宏为自家“L5级自动驾驶”站台时,行业正在对几天前的一起辅助驾驶事故进行反思。8月13日,美一好品牌管理公司创始人林文钦驾驶一辆<a href=\"https://laohu8.com/S/NIO\">蔚来</a>ES8,在高速路发生车祸,不幸遇难。虽然事件细节尚未厘清,但无论是家属还是蔚来官方都认同,林文钦发生事故时正在使用蔚来的NOP (Navigate on Pilot,领航辅助)功能。</p><p>事故发生后,业界开启了一轮自动驾驶技术的大讨论,反思过度营销和“美化”技术缺陷,正普遍导致驾驶者的错误认知,对风险降低警惕。</p><p>然而,行业的反思,并未影响到百度推进自动驾驶商业化的决心,它的步伐更加激进了。</p><p>“我们认为智能汽车未来会更像智能机器人,能移动,懂交流,会学习。”本届世界大会上,李彦宏指出,自动驾驶技术的商业化,是汽车进化为机器人的基础。他还提出,“自动驾驶下半场的角逐已经开启。”</p><p>但现实真的如同他说的那样吗?</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194106306v197bemlprc3nem\"/><p><strong>百度自动驾驶狂热营销</strong></p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194115053v197joxdwurey8e\"/><p>(图片来源:<a href=\"https://laohu8.com/S/000681\">视觉中国</a>)</p><p>8月18日一早,当李彦宏提出百度汽车机器人概念和特点之一是具备“L5级自动驾驶能力,不仅无需人类驾驶,而且比人类驾驶更安全”等描述时,百度某官方沟通群中,有人质问“蔚来车主遭遇不幸尸骨未寒,这边就宣传L5级自动驾驶不太好吧?”,但这一质问并未得到百度的正面回答。</p><p>事实上,百度在自动驾驶领域的“激进”开始得很早。2013年百度无人车项目起步,2015年底,百度宣布正式成立自动驾驶事业部,时任百度高级副总裁的王劲担任该事业部总经理。王劲公开宣称,百度自动驾驶事业部的业务职能主要在于促进自动驾驶汽车的“技术化、产品化、商业化”,计划三年实现自动驾驶汽车商用化,五年实现量产。</p><p>为了实现王劲公布的目标,百度在自动驾驶上的投入也是大手笔。从2015年起,百度每年在自动驾驶上烧掉上百亿元,李彦宏在接受采访时透露,百度仅2020年一年在自动驾驶上的研发投入就超过了200亿元。</p><p>从后续发展情况来看,王劲当初信誓旦旦的计划并没有如期实现,但这丝毫不妨碍百度在自动驾驶上的持续高调。</p><p>从2017年开始,时任百度集团总裁兼首席运营官的陆奇,多次出现在与自动驾驶相关的行业活动中,他把握一切机会强调百度“All in AI”的未来计划。2018年1月,陆奇在电动车百人会的年会上发言透露,百度与厦门金融合作的L4等级(全自动驾驶等级)商用车会在年内量产。</p><p>有熟悉百度的人士告诉AI财经社,此前李彦宏并不完全认可百度将“All in AI”的提法,然而,在百度为自己贴上AI标签的数年间,公司美股股价从2013年的80美元每股、2015年最低百美元每股的区间,到2016年中已基本稳定在150美元以上,2018年5月更是超过280美元每股。</p><p>李彦宏似乎终于被说服了。2017年,李彦宏开始亲自下场为自动驾驶代言。这背后,自动驾驶被认为是AI最重要的落地场景。</p><p>就在本届百度世界大会的前几天,李彦宏在百度分析师电话会议上给出了自动驾驶出租车服务成熟化的时间表。他认为随着自动驾驶技术不断改进扩大测试场景,预期到2025年,自动驾驶出租车业务的总体成本将低于传统驾驶网约车的成本。</p><p>8月18日,李彦宏在“百度世界大会2021”上当场表示:“百度Apollo已经从技术验证阶段进入到规模化商业运营阶段。”</p><p>与此同时,业内却在质疑百度数据的可靠性。在今年7月举办的AI开放日活动上,百度自动驾驶产品运营部总监徐宝强对媒体介绍称,百度自动驾驶汽车目前在城市道路的成功率已经达到99.99%,综合安全性高于人类驾驶员。</p><p>但是,根据<a href=\"https://laohu8.com/S/600848\">上海临港</a>公布的示范区自动驾驶测试数据,2020年百度上传在当地的测试数据约19.6万条,在总计约383公里的测试中,百度平均每百公里需人工干预14次,显示出技术成熟度仍需提升。</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194119406v197ouxi5yurcy0\"/><p>(图片来源:视觉中国)</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194125129v197oujbgwg45is\"/><p><strong>言必称自动驾驶</strong></p><p><strong>百度带偏了行业?</strong></p><p>就在百度“狂吹”Apollo的前几天,行业正在反思自动驾驶的过度营销。</p><p>蔚来撞车事件后,8月16日,<a href=\"https://laohu8.com/S/LI\">理想汽车</a>创始人兼CEO李想在朋友圈发文,呼吁媒体和行业机构统一自动驾驶的中文名词的标准,避免夸张的宣传造成用户使用的误解。</p><p>360公司创始人、董事长兼CEO周鸿祎前排围观发言:“人工智能不是营销话术,没有那么神奇,自动驾驶、无人驾驶还有很多路要走,很多坑要填,不能为了营销误导用户。”</p><p>然而对于百度来说,很难不让人怀疑,为了推广自动驾驶,有过度营销之嫌。对于社会大众来说,最深刻地认识到自动驾驶这一概念,就是李彦宏亲自演示的那一次了。</p><p>在2017年7月举行的百度AI开发者大会上,李彦宏通过视频直播,展示了一段自己乘坐公司研发的无人驾驶汽车的情景。视频中,李彦宏坐在副驾驶座位上,而驾驶座位没有驾驶员。他称自己刚刚上五环,正在前往会场的路上,“车处在自动驾驶的状态。”</p><p>这无疑起到了非常不好的示范作用,事后,交警对其开了罚单。但随之而来的并非是百度的反思,“李彦宏开无人车收罚单”反而成了百度对外营销无人驾驶的爆点,李彦宏曾公开表示,“如果无人驾驶的罚单已经来了,无人驾驶汽车的量产还会远吗?”</p><p>百度明白,要加速推进自动驾驶的落地,需要同时在C端下功夫,强化用户对自动驾驶的接受度。</p><p>为推广自动驾驶业务,百度拉拢了奔驰、宝马、福特、通用、凯迪拉克、长城、奇瑞等诸多车企为其站台。从2017年至今,百度宣称已同70家车企、600余款车型达成合作。但这样的合作,并没有太多落地。</p><p>事实上,与百度同样激进的,是大洋彼岸的<a href=\"https://laohu8.com/S/TSLA\">特斯拉</a>。2015 年特斯拉首次发布 Autopilot 7.0 版,随后特斯拉创始人马斯克常在社交媒体上宣扬特斯拉自动驾驶功能的安全性。</p><p>在两大巨头的宣传中,自动驾驶时代“到来”的时间点被不断提前, 此后,为了争得投资者、消费者更多的关注度,自动驾驶企业、造车公司等争相“放卫星”。</p><p>AI财经社了解到,小鹏将自己的辅助驾驶系统命名为 “自动驾驶辅助”,蔚来则命名为 “自动辅助驾驶”,蔚来新推出的 NAD 更是直接打出“自动驾驶”。传统车厂中,极狐阿尔法 S 华为 HI 版描述为 “高阶自动驾驶” ,上汽和阿里合作的智己 L7 则表述为 “完全自动驾驶辅助” 。</p><p>对于技术的进阶,各车企纷纷拿出时间表。理想在赴港上市前,提出2025年实现L4。对于智能汽车,车企已经定好发布时间,从2021年秋季开始陆续上市。这不仅是车企的竞争,也是百度、华为等科技企业的竞争。今年4月,华为发布极狐阿尔法S华为HI版时,百度也立即宣布量产车有望明年亮相。</p><p>自动驾驶落地的“冲刺”已经开始。有百度Apollo员工说,公司内部都从过去的国企模式变得更有狼性了。</p><p>但问题是,自动驾驶技术真的成熟了吗?</p><img src=\"https://mmbiz.qpic.cn/mmbiz_png/voPFlazuM62AxLDeZN23DgeugqzCVo8DfQicPejiaUgHKH02BCNIcjia4cN7EywMIgt4ibpOSkOF1XdxE6XOlYBuibA/640?wx_fmt=png\"/><p>(图片来源:视觉中国)</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194200960v197s0vy2s3zleq\"/><p><strong>自动驾驶仍然遥远</strong></p><p>2016年,一名中国车主在使用特斯拉Autopilot模式驾驶时发生事故,随后,特斯拉将中国网站上的“自动驾驶”表述修改为“Autopilot自动辅助驾驶”。五年后,相似的一幕再次发生。</p><p>对此,Waymo前首席执行官约翰•科拉菲克极其真实地表达了自动驾驶面临的挑战性。他说:“这是一项非比寻常的苦差事。这比发射火箭并将其送入绕地轨道更具挑战性,因为它必须一遍又一遍安全地完成测试。”</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194209271v197qiq0hqa7c05\"/><p>(图片来源:视觉中国)</p><p>事实上,大部分人对自动驾驶技术难度的理解主要集中在车辆上,比如是否配备先进的传感器、算法软件等是否运行稳定,但这只是自动驾驶商业化落地面临的一小部分问题。</p><p>“现阶段自动驾驶无法大规模商用落地,它和整个交通体系有着很大的关系,单一车辆技术先进程度与否不是决定自动驾驶成功的唯一因素,背后涉及到的是对国家交通体系的变革,而这并非5年、10年能完成。” 一位从事自动驾驶行业的人士告诉AI财经社。</p><p>诸如此类的体验评价很多,揭露的核心问题还是在于当前的自动驾驶只是在小范围半封闭的场景下运行,如果一旦放到复杂的道路环境下,消费者、路人以及车企面临的危险都将被无限放大。</p><p>比如要在道路大量安装摄像头、传感器以及其他设备,整个成本非常高昂,这并非单个企业能承受。以上海这个开放道路测试区为例,73公里的里程布置了182个路侧单元,平均下来,每公里2.5个,这还只是示范区,如果整个智慧的路布置下来,成本将非常高。</p><p>一面是技术成熟、商业化距离遥远,另一面,是资本市场的关切。百度财报电话会议上,一个长盛不衰的问题是:“自动驾驶什么时候能带来收入?”</p><p>正是这一背景下,百度将此前对L4的宣传在本次世界大会上进一步进阶为L5。在18日的百度世界大会上,百度高层透露:“在未来两三年,使用百度技术的私家车就会上市。”</p><p>有投资人告诉AI财经社,智能化是吸引中国消费者最主要的点,而车企提价也要靠智能化。“未来没有智能的汽车都不好意思卖。”在百度世界大会上,有百度高层如是说。</p><p>从百度到造车公司特斯拉、理想、蔚来,在投入巨额资本研发的同时,却对自动驾驶进行过度营销,某种程度上说,这难免存在误导普通消费者的嫌疑。</p><p>不过,蔚来撞车事件后,已经引起了部分车企的反思。近日,理想、小鹏官网修改了关于辅助驾驶系统的描述,去掉了高级、自动字眼。其中,在理想汽车官微6月份发布的一条新功能宣传片中,使用名称是“理想AD高级辅助驾驶系统”,目前官网显示为“理想AD辅助驾驶系统”。</p><p>事实上,虽然自动驾驶普遍被认为是汽车行业的未来,但现阶段它的技术还处在初级阶段,离真正的大规模商用落地还有很长的路。</p><p>中国汽车工程学会名誉理事长付于武告诉AI财经社,“无论是智能网联还是自动驾驶,还远远达不到高度市场化、量产商业化程度。”</p><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194220110v1973xwh9ur3zqp\"/><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194226627v197pud8202dyjv\"/><img src=\"https://fid-75186.picgzc.qpic.cn/20210821194227930v197peqhtoal6yk\"/><p><strong>更多精彩内容,点击下方关注</strong>我们从《财经天下》周刊出发,以新媒体的形式和节奏、</p><p>以传统媒体求实的精神,致力于传播真正有价值的报道。</p><p>AI财经社原创内容,未经授权,禁止任何转载商务合作请电话/微信联系:13811292543</p><p><strong>文章好看,戳个</strong><strong>在看</strong><strong>!</strong><strong>▼</strong></p></article></body></html>","source":"tencent","collect":0,"html":"<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<meta name=\"viewport\" content=\"width=device-width,initial-scale=1.0,minimum-scale=1.0,maximum-scale=1.0,user-scalable=no\"/>\n<meta name=\"format-detection\" content=\"telephone=no,email=no,address=no\" />\n<title>百度带了个坏头</title>\n<style type=\"text/css\">\na,abbr,acronym,address,applet,article,aside,audio,b,big,blockquote,body,canvas,caption,center,cite,code,dd,del,details,dfn,div,dl,dt,\nem,embed,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,html,i,iframe,img,ins,kbd,label,legend,li,mark,menu,nav,\nobject,ol,output,p,pre,q,ruby,s,samp,section,small,span,strike,strong,sub,summary,sup,table,tbody,td,tfoot,th,thead,time,tr,tt,u,ul,var,video{ font:inherit;margin:0;padding:0;vertical-align:baseline;border:0 }\nbody{ font-size:16px; line-height:1.5; color:#999; background:transparent; }\n.wrapper{ overflow:hidden;word-break:break-all;padding:10px; }\nh1,h2{ font-weight:normal; line-height:1.35; margin-bottom:.6em; }\nh3,h4,h5,h6{ line-height:1.35; margin-bottom:1em; }\nh1{ font-size:24px; }\nh2{ font-size:20px; }\nh3{ font-size:18px; }\nh4{ font-size:16px; }\nh5{ font-size:14px; }\nh6{ font-size:12px; }\np,ul,ol,blockquote,dl,table{ margin:1.2em 0; }\nul,ol{ margin-left:2em; }\nul{ list-style:disc; }\nol{ list-style:decimal; }\nli,li p{ margin:10px 0;}\nimg{ max-width:100%;display:block;margin:0 auto 1em; }\nblockquote{ color:#B5B2B1; border-left:3px solid #aaa; padding:1em; }\nstrong,b{font-weight:bold;}\nem,i{font-style:italic;}\ntable{ width:100%;border-collapse:collapse;border-spacing:1px;margin:1em 0;font-size:.9em; }\nth,td{ padding:5px;text-align:left;border:1px solid #aaa; }\nth{ font-weight:bold;background:#5d5d5d; }\n.symbol-link{font-weight:bold;}\n/* header{ border-bottom:1px solid #494756; } */\n.title{ margin:0 0 8px;line-height:1.3;color:#ddd; }\n.meta {color:#5e5c6d;font-size:13px;margin:0 0 .5em; }\na{text-decoration:none; color:#2a4b87;}\n.meta .head { display: inline-block; overflow: hidden}\n.head .h-thumb { width: 30px; height: 30px; margin: 0; padding: 0; border-radius: 50%; float: left;}\n.head .h-content { margin: 0; padding: 0 0 0 9px; float: left;}\n.head .h-name {font-size: 13px; color: #eee; margin: 0;}\n.head .h-time {font-size: 11px; color: #7E829C; margin: 0;line-height: 11px;}\n.small {font-size: 12.5px; display: inline-block; transform: scale(0.9); -webkit-transform: scale(0.9); transform-origin: left; -webkit-transform-origin: left;}\n.smaller {font-size: 12.5px; display: inline-block; transform: scale(0.8); -webkit-transform: scale(0.8); transform-origin: left; -webkit-transform-origin: left;}\n.bt-text {font-size: 12px;margin: 1.5em 0 0 0}\n.bt-text p {margin: 0}\n</style>\n</head>\n<body>\n<div class=\"wrapper\">\n<header>\n<h2 class=\"title\">\n百度带了个坏头\n</h2>\n\n<h4 class=\"meta\">\n\n\n2021-08-21 19:38 北京时间 <a href=http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN202108211942297c317add&s=b><strong>AI财经社</strong></a>\n\n\n</h4>\n\n</header>\n<article>\n<div>\n<p>8月18日,百度将具备最高级别自动驾驶能力的“Apollo汽车机器人”放上世界大会头条时,业界正在进行一场对过度包装智能驾驶技术成熟度的反思。高级别自动驾驶技术距离商业化仍然遥远,但对于百度来说,Apollo的商业化进度、何时带来收益,已是李彦宏最常接到的提问,在百度急功近利的营销攻势下,自动驾驶“放卫星”已成常态。撰文 / 韩什 张汤编辑 / 杨茂8月18日,“百度世界大会2021”上,...</p>\n\n<a href=\"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN202108211942297c317add&s=b\">Web Link</a>\n\n</div>\n\n\n</article>\n</div>\n</body>\n</html>\n","type":0,"thumbnail":"https://static.tigerbbs.com/620fa6b7643be76ed489cf4a9bb97db7","relate_stocks":{},"source_url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN202108211942297c317add&s=b","is_english":false,"share_image_url":"https://static.laohu8.com/9a95c1376e76363c1401fee7d3717173","article_id":"2161749025","content_text":"8月18日,百度将具备最高级别自动驾驶能力的“Apollo汽车机器人”放上世界大会头条时,业界正在进行一场对过度包装智能驾驶技术成熟度的反思。高级别自动驾驶技术距离商业化仍然遥远,但对于百度来说,Apollo的商业化进度、何时带来收益,已是李彦宏最常接到的提问,在百度急功近利的营销攻势下,自动驾驶“放卫星”已成常态。撰文 / 韩什 张汤编辑 / 杨茂8月18日,“百度世界大会2021”上,Apollo自动驾驶成果被放在了首个环节展示。现场,百度创始人、董事长兼首席执行官李彦宏邀请到著名主持人撒贝宁,二人一同坐进Apollo“汽车机器人”,李彦宏抑制不住兴奋,向撒贝宁介绍起这款车,“L5级自动驾驶能力、语音人脸的多模交互能力以及机器人自身的学习进化能力。”李彦宏依然是发布会上最得意的人。根据国际汽车工程师学会(SAE)对自动驾驶等级的定义,L5是最高级别的自动驾驶,车辆的控制权由人转移向车。但是,对于L5真正实现的时间,业界认为仍然遥远,这次大会上,李彦宏似乎急于证明他已接近这个目标。“现在还没有一个企业敢说自己的汽车完全达到了L3(有条件的自动驾驶),它们还是停留在数值假设的阶段。”中国汽车工程学会名誉理事长付于武告诉AI财经社。当李彦宏为自家“L5级自动驾驶”站台时,行业正在对几天前的一起辅助驾驶事故进行反思。8月13日,美一好品牌管理公司创始人林文钦驾驶一辆蔚来ES8,在高速路发生车祸,不幸遇难。虽然事件细节尚未厘清,但无论是家属还是蔚来官方都认同,林文钦发生事故时正在使用蔚来的NOP (Navigate on Pilot,领航辅助)功能。事故发生后,业界开启了一轮自动驾驶技术的大讨论,反思过度营销和“美化”技术缺陷,正普遍导致驾驶者的错误认知,对风险降低警惕。然而,行业的反思,并未影响到百度推进自动驾驶商业化的决心,它的步伐更加激进了。“我们认为智能汽车未来会更像智能机器人,能移动,懂交流,会学习。”本届世界大会上,李彦宏指出,自动驾驶技术的商业化,是汽车进化为机器人的基础。他还提出,“自动驾驶下半场的角逐已经开启。”但现实真的如同他说的那样吗?百度自动驾驶狂热营销(图片来源:视觉中国)8月18日一早,当李彦宏提出百度汽车机器人概念和特点之一是具备“L5级自动驾驶能力,不仅无需人类驾驶,而且比人类驾驶更安全”等描述时,百度某官方沟通群中,有人质问“蔚来车主遭遇不幸尸骨未寒,这边就宣传L5级自动驾驶不太好吧?”,但这一质问并未得到百度的正面回答。事实上,百度在自动驾驶领域的“激进”开始得很早。2013年百度无人车项目起步,2015年底,百度宣布正式成立自动驾驶事业部,时任百度高级副总裁的王劲担任该事业部总经理。王劲公开宣称,百度自动驾驶事业部的业务职能主要在于促进自动驾驶汽车的“技术化、产品化、商业化”,计划三年实现自动驾驶汽车商用化,五年实现量产。为了实现王劲公布的目标,百度在自动驾驶上的投入也是大手笔。从2015年起,百度每年在自动驾驶上烧掉上百亿元,李彦宏在接受采访时透露,百度仅2020年一年在自动驾驶上的研发投入就超过了200亿元。从后续发展情况来看,王劲当初信誓旦旦的计划并没有如期实现,但这丝毫不妨碍百度在自动驾驶上的持续高调。从2017年开始,时任百度集团总裁兼首席运营官的陆奇,多次出现在与自动驾驶相关的行业活动中,他把握一切机会强调百度“All in AI”的未来计划。2018年1月,陆奇在电动车百人会的年会上发言透露,百度与厦门金融合作的L4等级(全自动驾驶等级)商用车会在年内量产。有熟悉百度的人士告诉AI财经社,此前李彦宏并不完全认可百度将“All in AI”的提法,然而,在百度为自己贴上AI标签的数年间,公司美股股价从2013年的80美元每股、2015年最低百美元每股的区间,到2016年中已基本稳定在150美元以上,2018年5月更是超过280美元每股。李彦宏似乎终于被说服了。2017年,李彦宏开始亲自下场为自动驾驶代言。这背后,自动驾驶被认为是AI最重要的落地场景。就在本届百度世界大会的前几天,李彦宏在百度分析师电话会议上给出了自动驾驶出租车服务成熟化的时间表。他认为随着自动驾驶技术不断改进扩大测试场景,预期到2025年,自动驾驶出租车业务的总体成本将低于传统驾驶网约车的成本。8月18日,李彦宏在“百度世界大会2021”上当场表示:“百度Apollo已经从技术验证阶段进入到规模化商业运营阶段。”与此同时,业内却在质疑百度数据的可靠性。在今年7月举办的AI开放日活动上,百度自动驾驶产品运营部总监徐宝强对媒体介绍称,百度自动驾驶汽车目前在城市道路的成功率已经达到99.99%,综合安全性高于人类驾驶员。但是,根据上海临港公布的示范区自动驾驶测试数据,2020年百度上传在当地的测试数据约19.6万条,在总计约383公里的测试中,百度平均每百公里需人工干预14次,显示出技术成熟度仍需提升。(图片来源:视觉中国)言必称自动驾驶百度带偏了行业?就在百度“狂吹”Apollo的前几天,行业正在反思自动驾驶的过度营销。蔚来撞车事件后,8月16日,理想汽车创始人兼CEO李想在朋友圈发文,呼吁媒体和行业机构统一自动驾驶的中文名词的标准,避免夸张的宣传造成用户使用的误解。360公司创始人、董事长兼CEO周鸿祎前排围观发言:“人工智能不是营销话术,没有那么神奇,自动驾驶、无人驾驶还有很多路要走,很多坑要填,不能为了营销误导用户。”然而对于百度来说,很难不让人怀疑,为了推广自动驾驶,有过度营销之嫌。对于社会大众来说,最深刻地认识到自动驾驶这一概念,就是李彦宏亲自演示的那一次了。在2017年7月举行的百度AI开发者大会上,李彦宏通过视频直播,展示了一段自己乘坐公司研发的无人驾驶汽车的情景。视频中,李彦宏坐在副驾驶座位上,而驾驶座位没有驾驶员。他称自己刚刚上五环,正在前往会场的路上,“车处在自动驾驶的状态。”这无疑起到了非常不好的示范作用,事后,交警对其开了罚单。但随之而来的并非是百度的反思,“李彦宏开无人车收罚单”反而成了百度对外营销无人驾驶的爆点,李彦宏曾公开表示,“如果无人驾驶的罚单已经来了,无人驾驶汽车的量产还会远吗?”百度明白,要加速推进自动驾驶的落地,需要同时在C端下功夫,强化用户对自动驾驶的接受度。为推广自动驾驶业务,百度拉拢了奔驰、宝马、福特、通用、凯迪拉克、长城、奇瑞等诸多车企为其站台。从2017年至今,百度宣称已同70家车企、600余款车型达成合作。但这样的合作,并没有太多落地。事实上,与百度同样激进的,是大洋彼岸的特斯拉。2015 年特斯拉首次发布 Autopilot 7.0 版,随后特斯拉创始人马斯克常在社交媒体上宣扬特斯拉自动驾驶功能的安全性。在两大巨头的宣传中,自动驾驶时代“到来”的时间点被不断提前, 此后,为了争得投资者、消费者更多的关注度,自动驾驶企业、造车公司等争相“放卫星”。AI财经社了解到,小鹏将自己的辅助驾驶系统命名为 “自动驾驶辅助”,蔚来则命名为 “自动辅助驾驶”,蔚来新推出的 NAD 更是直接打出“自动驾驶”。传统车厂中,极狐阿尔法 S 华为 HI 版描述为 “高阶自动驾驶” ,上汽和阿里合作的智己 L7 则表述为 “完全自动驾驶辅助” 。对于技术的进阶,各车企纷纷拿出时间表。理想在赴港上市前,提出2025年实现L4。对于智能汽车,车企已经定好发布时间,从2021年秋季开始陆续上市。这不仅是车企的竞争,也是百度、华为等科技企业的竞争。今年4月,华为发布极狐阿尔法S华为HI版时,百度也立即宣布量产车有望明年亮相。自动驾驶落地的“冲刺”已经开始。有百度Apollo员工说,公司内部都从过去的国企模式变得更有狼性了。但问题是,自动驾驶技术真的成熟了吗?(图片来源:视觉中国)自动驾驶仍然遥远2016年,一名中国车主在使用特斯拉Autopilot模式驾驶时发生事故,随后,特斯拉将中国网站上的“自动驾驶”表述修改为“Autopilot自动辅助驾驶”。五年后,相似的一幕再次发生。对此,Waymo前首席执行官约翰•科拉菲克极其真实地表达了自动驾驶面临的挑战性。他说:“这是一项非比寻常的苦差事。这比发射火箭并将其送入绕地轨道更具挑战性,因为它必须一遍又一遍安全地完成测试。”(图片来源:视觉中国)事实上,大部分人对自动驾驶技术难度的理解主要集中在车辆上,比如是否配备先进的传感器、算法软件等是否运行稳定,但这只是自动驾驶商业化落地面临的一小部分问题。“现阶段自动驾驶无法大规模商用落地,它和整个交通体系有着很大的关系,单一车辆技术先进程度与否不是决定自动驾驶成功的唯一因素,背后涉及到的是对国家交通体系的变革,而这并非5年、10年能完成。” 一位从事自动驾驶行业的人士告诉AI财经社。诸如此类的体验评价很多,揭露的核心问题还是在于当前的自动驾驶只是在小范围半封闭的场景下运行,如果一旦放到复杂的道路环境下,消费者、路人以及车企面临的危险都将被无限放大。比如要在道路大量安装摄像头、传感器以及其他设备,整个成本非常高昂,这并非单个企业能承受。以上海这个开放道路测试区为例,73公里的里程布置了182个路侧单元,平均下来,每公里2.5个,这还只是示范区,如果整个智慧的路布置下来,成本将非常高。一面是技术成熟、商业化距离遥远,另一面,是资本市场的关切。百度财报电话会议上,一个长盛不衰的问题是:“自动驾驶什么时候能带来收入?”正是这一背景下,百度将此前对L4的宣传在本次世界大会上进一步进阶为L5。在18日的百度世界大会上,百度高层透露:“在未来两三年,使用百度技术的私家车就会上市。”有投资人告诉AI财经社,智能化是吸引中国消费者最主要的点,而车企提价也要靠智能化。“未来没有智能的汽车都不好意思卖。”在百度世界大会上,有百度高层如是说。从百度到造车公司特斯拉、理想、蔚来,在投入巨额资本研发的同时,却对自动驾驶进行过度营销,某种程度上说,这难免存在误导普通消费者的嫌疑。不过,蔚来撞车事件后,已经引起了部分车企的反思。近日,理想、小鹏官网修改了关于辅助驾驶系统的描述,去掉了高级、自动字眼。其中,在理想汽车官微6月份发布的一条新功能宣传片中,使用名称是“理想AD高级辅助驾驶系统”,目前官网显示为“理想AD辅助驾驶系统”。事实上,虽然自动驾驶普遍被认为是汽车行业的未来,但现阶段它的技术还处在初级阶段,离真正的大规模商用落地还有很长的路。中国汽车工程学会名誉理事长付于武告诉AI财经社,“无论是智能网联还是自动驾驶,还远远达不到高度市场化、量产商业化程度。”更多精彩内容,点击下方关注我们从《财经天下》周刊出发,以新媒体的形式和节奏、以传统媒体求实的精神,致力于传播真正有价值的报道。AI财经社原创内容,未经授权,禁止任何转载商务合作请电话/微信联系:13811292543文章好看,戳个在看!▼","news_type":1},"isVote":1,"tweetType":1,"viewCount":2842,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0},{"id":832232123,"gmtCreate":1629636318862,"gmtModify":1629636318862,"author":{"id":"3545990537092247","authorId":"3545990537092247","name":"alexwanger","avatar":"https://static.tigerbbs.com/efcb0047d45413e1efba977b9c8c18d1","crmLevel":1,"crmLevelSwitch":0,"followedFlag":false,"authorIdStr":"3545990537092247","idStr":"3545990537092247"},"themes":[],"htmlText":"等我港股开了户,我就买!😀","listText":"等我港股开了户,我就买!😀","text":"等我港股开了户,我就买!😀","images":[],"top":1,"highlighted":1,"essential":1,"paper":1,"likeSize":0,"commentSize":0,"repostSize":0,"link":"https://laohu8.com/post/832232123","repostId":"2161749025","repostType":2,"isVote":1,"tweetType":1,"viewCount":2819,"authorTweetTopStatus":1,"verified":2,"comments":[],"imageCount":0,"langContent":"CN","totalScore":0}],"lives":[]}